Solveeit Logo

Question

Question: At \({25^ \circ }C\) \({\left( {\dfrac{{\partial E}}{{\partial T}}} \right)_p} = - 1.25 \times {10^{...

At 25C{25^ \circ }C (ET)p=1.25×103VK1{\left( {\dfrac{{\partial E}}{{\partial T}}} \right)_p} = - 1.25 \times {10^{ - 3}}V{K^{ - 1}} And E=1.36V{E^ \circ } = 1.36V .For the cell XX+2Y+2Y.X|{X^{ + 2}}||{Y^{ + 2}}|Y. Calculate standard entropy change for cell reaction in (J/K)\left( {J/K} \right) .
A.A. 241.45 - 241.45
B.B. 400400
C.C. 3.34×102 - 3.34 \times {10^2}
D.D. 200200

Explanation

Solution

EMF measurement of electrochemical cells is one of the convenient methods to determine the value of physical quantities such as equilibrium constant, ionization constant, pHpH of a solution and the value of Thermodynamics properties of ions. Entropy change, Enthalpy change, and free Gibbs energy change. $$$$

Complete answer:
In the given question it is given that,
(ET)p=1.25×103VK1{\left( {\dfrac{{\partial E}}{{\partial T}}} \right)_p} = - 1.25 \times {10^{ - 3}}V{K^{ - 1}} And E=1.36V{E^ \circ } = 1.36V
Before solving the question first we have to find the relation between entropy change ΔS\Delta S and (ET)p{\left( {\dfrac{{\partial E}}{{\partial T}}} \right)_p}
Since, the free Gibbs energy changes accompanying a cell reaction can be determined from the emf of a cell.
\Rightarrow ΔG=nfE\Delta G = - nf{E^ \circ } (1)\left( 1 \right)
The change in enthalpy and entropy of the cell reaction can also be obtained if the temperature depends on the emf of the cell. For this we make use of Gibbs- Helmholtz equation,
\Rightarrow ΔG=ΔH+T((ΔG)T)\Delta G = \Delta H + T\left( {\dfrac{{\partial \left( {\Delta G} \right)}}{{\partial T}}} \right) (2)\left( 2 \right)
Now, From equation ΔG=nfE\Delta G = - nf{E^ \circ }differentiate with respect to Temperature (T)\left( T \right) at constant pressure (p)\left( p \right) , we get

\Rightarrow (ΔG)T=nf(ET)p\dfrac{{\partial \left( {\Delta G} \right)}}{{\partial T}} = - nf{\left( {\dfrac{{\partial {E^ \circ }}}{{\partial T}}} \right)_p} (3)\left( 3 \right)
Substituting equation (1)\left( 1 \right) and (3)\left( 3 \right) in equation (2)\left( 2 \right), we get
\Rightarrow nfE=ΔHnf(ET)p - nf{E^ \circ } = \Delta H - nf{\left( {\dfrac{{\partial E}}{{\partial T}}} \right)_p}
By rearranging we get,
\Rightarrow ΔH=nf[ET(ET)p]\Delta H = - nf\left[ {{E^ \circ } - T{{\left( {\dfrac{{\partial E}}{{\partial T}}} \right)}_p}} \right] (4)\left( 4 \right)
For entropy change we , know
ΔG=ΔHTΔS\Delta G = \Delta H - T\Delta S
\Rightarrow ΔS=ΔHΔGT\Delta S = \dfrac{{\Delta H - \Delta G}}{T}
Substituting the value of ΔH\Delta H and ΔG\Delta G from equation (1)\left( 1 \right) and (4)\left( 4 \right) , we get
\Rightarrow ΔS=nf(ET)p\Delta S = - nf{\left( {\dfrac{{\partial {E^ \circ }}}{{\partial T}}} \right)_p}
Now, we can solve the equation using above equation
From the given cell, we have n=2n = 2

ElectrodeReduction reaction
RightY2++2eY{Y^{2 + }} + 2{e^ - } \to Y
LeftX2++2eX{X^{2 + }} + 2{e^ - } \to X

Hence, ΔS=2×96500(1.25×103)\Delta S = 2 \times 96500\left( { - 1.25 \times {{10}^{ - 3}}} \right)
\Rightarrow ΔS=241.45J/K\Delta S = - 241.45J/K

Thus, the option (A)\left( A \right) is correct.

Note:
Oxidation takes place at anode and reduction at cathode in a cell of either type (Galvanic cell and electrolytic cell). The main difference of the sign of the electrode. Table given below summarizes the sign convention for electrodes.

AnodeCathode
CellSign
GalvanicNegative
ElectrolyticPositive