Solveeit Logo

Question

Chemistry Question on Law Of Chemical Equilibrium And Equilibrium Constant

At 20C-20^\circ \text{C} and 1 atm pressure, a cylinder is filled with an equal number of H2H_2, I2I_2, and HIHI molecules for the reaction:
H2(g)+I2(g)2HI(g)H_2(g) + I_2(g) \rightleftharpoons 2HI(g) The KPK_P for the process is x×101x \times 10^{-1}.
x = ___________) **Given:** \(R = 0.082 \, \text{L atm K}^{-1} \text{mol}^{-1}

A

2

B

1

C

10

D

0.01

Answer

10

Explanation

Solution

The reaction given is:
H2(g)+I2(g)2HI(g)\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2\text{HI}(g)
At equilibrium, Δng=0\Delta n_g = 0 (no change in the number of moles of gas). Therefore:
Kp=(nHI)2nH2nI2(PTPT)ΔngK_p = \frac{(n_{\text{HI}})^2}{n_{\text{H}_2} \cdot n_{\text{I}_2}} \cdot \left( \frac{P_T}{P_T} \right)^{\Delta n_g}
Since Δng=0\Delta n_g = 0, the pressure term simplifies:
Kp=(nHI)2nH2nI2K_p = \frac{(n_{\text{HI}})^2}{n_{\text{H}_2} \cdot n_{\text{I}_2}}
Given that the number of moles of H2_2, I2_2, and HI are all initially equal:
nH2=nI2=1,nHI=1n_{\text{H}_2} = n_{\text{I}_2} = 1, \quad n_{\text{HI}} = 1
Substituting into the formula:
Kp=(1)211=1×101K_p = \frac{(1)^2}{1 \cdot 1} = 1 \times 10^1
Thus:
x=10x = 10