Solveeit Logo

Question

Chemistry Question on Equilibrium

At 1127K1127\,K and 1atm1 \,atm pressure, a gaseous mixture of COCO and CO2CO_2 in equilibrium with solid carbon has 90.55%CO90.55\%\, CO by mass, C(s)+CO2(g)<=>2CO(g) {C_{(s)} +CO2_{(g)} <=> 2CO_{(g)}} KcK_c for this reaction at the above temperature is

A

1.531.53

B

0.1530.153

C

0.530.53

D

0.760.76

Answer

0.1530.153

Explanation

Solution

Let the total mass of the mixture of COCO and CO2CO_2 is 100g100\,g, then CO=90.55gCO = 90.55\,g and CO2=10090.55=9.45gCO_2 = 100 - 90.55 = 9.45 \,g Moles of CO=90.5528=3.234CO=\frac{90.55}{28}=3.234 ; Moles of CO2=9.4544=0.215CO_{2}=\frac{9.45}{44}=0.215 Mole fraction of CO=3.2343.234+0.215CO =\frac{3.234}{3.234+0.215} =0.938=0.938 Mole fraction of CO2=0.2153.234+0.215CO_{2}=\frac{0.215}{3.234+0.215} =0.062=0.062 pCO=\therefore p_{CO}= mole fraction ×\times total pressure =0.938×1atm=0.938atm=0.938\times1\,atm=0.938\,atm pCO2=0.062×1atm=0.062atmp_{CO_{2}}=0.062\times1\,atm=0.062\,atm KpK_p for the reaction, C(s)+CO2(g)<=>2CO(g) {C_{(s)} +CO_{2(g)} <=> 2CO_{(g)}} Kp=pCO2pCO2K_{p}=\frac{p^{2}_{CO}}{p_{CO_2}} =(0.938)20.062=14.19=\frac{\left(0.938\right)^{2}}{0.062}=14.19 Now, Δng=21=1\Delta n_{g}=2-1=1, Kp=Kc(RT)ΔngK_{p}=K_{c}\left(RT\right)^{\Delta n}g or Kc=KpRT=14.190.0821×1127=0.153K_{c}=\frac{K_{p}}{RT}=\frac{14.19}{0.0821\times1127}=0.153