Solveeit Logo

Question

Question: Assuming ‘\(x\)’ to be so small that \({x^2}\) and higher powers of ‘\(x\)’ can be neglected, show t...

Assuming ‘xx’ to be so small that x2{x^2} and higher powers of ‘xx’ can be neglected, show that (1+34x)4(163x)12(8+x)23\dfrac{{{{\left( {1 + \dfrac{3}{4}x} \right)}^{ - 4}}{{\left( {16 - 3x} \right)}^{\dfrac{1}{2}}}}}{{{{\left( {8 + x} \right)}^{\dfrac{2}{3}}}}} is approximately equal to 1305x961 - \dfrac{{305x}}{{96}}.

Explanation

Solution

Hint : In the given problem, we have to simplify the expression by neglecting x2{x^2} and higher power of ‘xx’ like x3{x^3}, x4{x^4} \ldots \ldots . For this, first we will convert each term in the form of (1+x)n{\left( {1 + x} \right)^n} or (1x)n{\left( {1 - x} \right)^n}. Then, we will use the expansion of (1+x)n{\left( {1 + x} \right)^n} or (1x)n{\left( {1 - x} \right)^n} whatever is applicable. After neglecting x2{x^2} and higher power of ‘xx’, we can say that (1+x)n{\left( {1 + x} \right)^n} is approximately equal to 1+nx1 + nx and (1x)n{\left( {1 - x} \right)^n} is approximately equal to 1nx1 - nx.

Complete step-by-step answer :
In this problem, the given expression is (1+34x)4(163x)12(8+x)23(1)\dfrac{{{{\left( {1 + \dfrac{3}{4}x} \right)}^{ - 4}}{{\left( {16 - 3x} \right)}^{\dfrac{1}{2}}}}}{{{{\left( {8 + x} \right)}^{\dfrac{2}{3}}}}} \cdots \cdots \left( 1 \right). Let us simplify the term (163x)12{\left( {16 - 3x} \right)^{\dfrac{1}{2}}} by taking 1616 common out. So, we can write
(163x)12\Rightarrow {\left( {16 - 3x} \right)^{\dfrac{1}{2}}}
=(16)12(13x16)12= {\left( {16} \right)^{\dfrac{1}{2}}}{\left( {1 - \dfrac{{3x}}{{16}}} \right)^{\dfrac{1}{2}}}
=4(13x16)12(2)= 4{\left( {1 - \dfrac{{3x}}{{16}}} \right)^{\dfrac{1}{2}}} \cdots \cdots \left( 2 \right)
Let us simplify the term (8+x)23{\left( {8 + x} \right)^{\dfrac{2}{3}}} by taking 88 common out. So, we can write
(8+x)23\Rightarrow {\left( {8 + x} \right)^{\dfrac{2}{3}}}
=(8)23(1+x8)23= {\left( 8 \right)^{\dfrac{2}{3}}}{\left( {1 + \dfrac{x}{8}} \right)^{\dfrac{2}{3}}}
=(23)23(1+x8)23= {\left( {{2^3}} \right)^{\dfrac{2}{3}}}{\left( {1 + \dfrac{x}{8}} \right)^{\dfrac{2}{3}}}
=4(1+x8)23(3)= 4{\left( {1 + \dfrac{x}{8}} \right)^{\dfrac{2}{3}}} \cdots \cdots \left( 3 \right)
From (1)\left( 1 \right), (2)\left( 2 \right), (3)\left( 3 \right), we can rewrite the given expression. So, we get
(1+34x)44(13x16)124(1+x8)23(4)\Rightarrow \dfrac{{{{\left( {1 + \dfrac{3}{4}x} \right)}^{ - 4}}4{{\left( {1 - \dfrac{{3x}}{{16}}} \right)}^{\dfrac{1}{2}}}}}{{4{{\left( {1 + \dfrac{x}{8}} \right)}^{\dfrac{2}{3}}}}} \cdots \cdots \left( 4 \right)
Let us simplify the expression (4)\left( 4 \right). So, we get (1+34x)4(13x16)12(1+x8)  23(5){\left( {1 + \dfrac{3}{4}x} \right)^{ - \,4}}{\left( {1 - \dfrac{{3x}}{{16}}} \right)^{\dfrac{1}{2}}}{\left( {1 + \dfrac{x}{8}} \right)^{ - \;\dfrac{2}{3}}} \cdots \cdots \left( 5 \right)
Let us expand each term of expression (5)\left( 5 \right). Note that after neglecting x2{x^2} and higher powers of ‘xx’ , we can say that (1+x)n1+nx{\left( {1 + x} \right)^n} \approx 1 + nx and (1x)n1nx{\left( {1 - x} \right)^n} \approx 1 - nx. Use this information in (5)\left( 5 \right), so we can write
[1+(4)(3x4)][112(3x16)][1+(23)(x8)]\Rightarrow \left[ {1 + \left( { - 4} \right)\left( {\dfrac{{3x}}{4}} \right)} \right]\left[ {1 - \dfrac{1}{2}\left( {\dfrac{{3x}}{{16}}} \right)} \right]\left[ {1 + \left( { - \dfrac{2}{3}} \right)\left( {\dfrac{x}{8}} \right)} \right]
(13x)(13x32)(1x12)\approx \left( {1 - 3x} \right)\left( {1 - \dfrac{{3x}}{{32}}} \right)\left( {1 - \dfrac{x}{{12}}} \right)
Let us multiply all terms (brackets) of above expression. Note that we will neglect x2{x^2} and higher powers of ‘xx’. So we get
(13x323x)(1x12)\left( {1 - \dfrac{{3x}}{{32}} - 3x} \right)\left( {1 - \dfrac{x}{{12}}} \right)
(199x32)(1x12)\approx \left( {1 - \dfrac{{99x}}{{32}}} \right)\left( {1 - \dfrac{x}{{12}}} \right)
1x1299x32\approx 1 - \dfrac{x}{{12}} - \dfrac{{99x}}{{32}}
18x96297x96\approx 1 - \dfrac{{8x}}{{96}} - \dfrac{{297x}}{{96}}
130596x\approx 1 - \dfrac{{305}}{{96}}x

Note : Remember that the expression of (1+x)n{\left( {1 + x} \right)^n} is given by (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + \cdots \cdots . Replace xx by x - x, so we can find expansion of (1x)n{\left( {1 - x} \right)^n}.