Solveeit Logo

Question

Question: Assuming that \[\log \left( mn \right)=\log m+\log n\]. Prove that \[\log {{x}^{n}}=n\log x\]....

Assuming that log(mn)=logm+logn\log \left( mn \right)=\log m+\log n. Prove that logxn=nlogx\log {{x}^{n}}=n\log x.

Explanation

Solution

Hint: Extend the given formula for nnnumber of times to get the nnin the given problem and put m=n=xm=n=x.

Here we are given that log(mn)=logm+logn\log \left( mn \right)=\log m+\log n.
We have to prove that logxn=nlogx\log {{x}^{n}}=n\log x.
Now, we take the equation given.
log(mn)=logm+lognequation(i)\log \left( mn \right)=\log m+\log n\to \text{equation}\left( i \right)
As we can see that, we have to prove the given equation in terms ofxx.
Therefore, we put m=n=xm=n=xin equation(i)\left( i \right).
We get, log(x.x)=logx+logx\log \left( x.x \right)=\log x+\log x
=logx2=2logx=\log {{x}^{2}}=2\log x
Now we will add logx\log xon both sides,
=logx2+logx=2logx+logx=\log {{x}^{2}}+\log x=2\log x+\log x
=logx2.x=3logx=\log {{x}^{2}}.x=3\log x[From equation(i)\left( i \right)]
As we know that am.an=am+n{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}
Therefore, x2.x2=x2+1=x3{{x}^{2}}.{{x}^{2}}={{x}^{2+1}}={{x}^{3}}
Hence, we get logx3=3logx\log {{x}^{3}}=3\log x
Similarly, if we add \log x$$$$ntimes
We get, logx+logx+logx....n times=log(x.x.x.x....n times)\log x+\log x+\log x....n\text{ times}=\log \left( x.x.x.x....n\text{ times} \right)[From
equation(i)\left( i \right)]
We get, nlogx=log(x.x.x....n times)n\log x=\log \left( x.x.x....n\text{ times} \right)
As, am1.am2.....amn=am1+m2+m3+.....mn{{a}^{{{m}_{1}}}}.{{a}^{{{m}_{2}}}}.....{{a}^{{{m}_{n}}}}={{a}^{{{m}_{1}}+{{m}_{2}}+{{m}_{3}}+.....{{m}_{n}}} }
We get, x1.x1.x1.....n times = x1+1+1.....n times=xn{{x}^{1}}.{{x}^{1}}.{{x}^{1}}.....n\text{ times = }{{\text{x}}^{1+1+1.....n\text{ times}}}={{x}^{n}}
Hence, we get nlogx=logxnn\log x=\log {{x}^{n}}
Therefore, we proved the desired equation.

Note: Students must note that they have to prove logxn=nlogx\log {{x}^{n}}=n\log xstarting from logm+logn=logmn\log m+\log n=\log mnbecause the result can also be proved by rules of logarithm. That is, by taking logax=t{{\log }_{a}}x=tand putting x=atx={{a}^{t}}and then raising both sides to the power of nnwhich would be
wrong for a given question.