Solveeit Logo

Question

Physics Question on Nuclei

Assuming that about 20.MeV20.\,MeV of energy is released per fusion reaction 1H2+1H30n1+2He4{ }_{1} H ^{2}+{ }_{1} H ^{3} \rightarrow{ }_{0} n^{1}+{ }_{2} He ^{4} then the mass of 1H2{ }_{1} H ^{2} consumed per day in a fusion reactor of power 1MW1\, MW will approximately be

A

0.001 g

B

0.1 g

C

10.0 g

D

1000 g

Answer

0.1 g

Explanation

Solution

Energy produced,
U=PtU=P t
=106×24×36×102=10^{6} \times 24 \times 36 \times 10^{2}
=24×36×108J=24 \times 36 \times 10^{8} \,J
Energy released per fusion reaction
=20MeV=20\, MeV
=20×106×1.6×1019=20 \times 10^{6} \times 1.6 \times 10^{-19}
=32×1013J=32 \times 10^{13} \,J
Energy released per atom of 1H2{ }_{1} H^{2}
=32×1013J=32 \times 10^{-13}\, J
Number of 1H2_{1} H^{2} atoms used
=24×36×10832×1013=\frac{24 \times 36 \times 10^{8}}{32 \times 10^{-13}}
=27×1021=27 \times 10^{21}
Mass of 6×10236 \times 10^{23} atoms =2g=2\, g
\therefore Mass of 27×102127 \times 10^{21} atoms
=26×1023×27×1021=0.1g=\frac{2}{6 \times 10^{23}} \times 27 \times 10^{21}=0.1 \,g