Solveeit Logo

Question

Physics Question on Gravitation

Assuming earth to be sphere of uniform density what is the value of acceleration due to gravity at a point 100km100\, km below the earth surface (Given R=6380×103mR=6380\,\times 10^{3}\,m)

A

3.10m/s3.10\, m/s

B

5.06m/s2 5.06\,m/s^{2}

C

7.64m/s2 7.64\,m/s^{2}

D

9.66m/s2 9.66\,m/s^{2}

Answer

9.66m/s2 9.66\,m/s^{2}

Explanation

Solution

Here : Depth =100km=100×103m=100\, km =100 \times 10^{3} m Radius of earth R=6380×103mR=6380 \times 10^{3} m Acceleration due to gravity below the earth's surface is given by g,=g(1dR)g,=g\left(1-\frac{d}{R}\right) g=9.8[1100×1036380×103]g'=9.8\left[1-\frac{100 \times 10^{3}}{6380 \times 10^{3}}\right] =9.8[1163.8]=9.8\left[1-\frac{1}{63.8}\right] =9.8×62.863.8=9.66m/s2=9.8 \times \frac{62.8}{63.8}=9.66\, m / s ^{2}