Solveeit Logo

Question

Question: Assuming **2s-2p** mixing is not operative the paramagnetic species among the following is: A) \(\...

Assuming 2s-2p mixing is not operative the paramagnetic species among the following is:
A)  Be\text{ B}{{\text{e}}_{\text{2 }}}
B)  N\text{ }{{\text{N}}_{\text{2 }}}
C)  C\text{ }{{\text{C}}_{\text{2 }}}
D)  B\text{ }{{\text{B}}_{\text{2 }}}

Explanation

Solution

The magnetic property of a molecule can be explained based on the molecular orbital theory. The molecule which does not contain the unpaired electron is known as the paramagnetic. The molecule which has all-electron paid-up does not contribute towards the magnetic property. It is diamagnetic in nature. To solve such a problem write down the MOT diagram of molecules.

Complete step by step solution:
The MOT diagram is drawn in such a way that we do not consider the s and p orbital mixing. Therefore the order of orbitals is not changed.
Let’s first draw the MOT of all molecules given in the problem.
A)  Be\text{ B}{{\text{e}}_{\text{2 }}} molecule: Beryllium atom has two electrons in the first shell and two-electrons in the second shell. The electronic configuration of the beryllium atom is as shown below,
 Be = 1s2 2s2 \text{ Be = 1}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{s}}^{\text{2}}}\text{ }
The  Be\text{ B}{{\text{e}}_{\text{2 }}}molecule contains a total of 8 electrons in it. These 8 electrons are arranged in the molecular orbitals.
The MOT is as shown below,

First of all, we can write the molecular orbital configuration of  Be2\text{ B}{{\text{e}}_{\text{2}}} . The molecular orbital configuration of  Be2\text{ B}{{\text{e}}_{\text{2}}} the molecule is as follows:
$$$$$$\text{ }\!\!\sigma\!\!\text{ 1}{{\text{s}}^{\text{2}}}\text{,}{{\text{ }\!\!\sigma\!\!\text{ }}^{\text{}}}\text{1}{{\text{s}}^{\text{2}}}\text{, }\!\!\sigma\!\!\text{ 2}{{\text{s}}^{\text{2}}}\text{, }{{\text{ }\!\!\sigma\!\!\text{ }}^{\text{}}}\text{2}{{\text{s}}^{\text{2}}}\text{ OR KK , }\!\!\sigma\!\!\text{ 2}{{\text{s}}^{\text{2}}}\text{, }{{\text{ }\!\!\sigma\!\!\text{ }}^{\text{*}}}\text{2}{{\text{s}}^{\text{2}}}\text{ }$$
Since, here all molecular orbitals contain the two electrons. These are all paired electrons. Thus  Be2\text{ B}{{\text{e}}_{\text{2}}} the molecule is diamagnetic.
B)  N\text{ }{{\text{N}}_{\text{2 }}} molecule : The nitrogen atom has three electrons in the 2p shell and 4 electrons in the innermost shell. The electronic configuration of nitrogen atom is as shown below,
 N = 1s2 2s2 2p1x= 2p1y=2p1z \text{ N = 1}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{p}}^{\text{1}}}_{\text{x}}\text{= 2}{{\text{p}}^{\text{1}}}_{\text{y}}=\text{2}{{\text{p}}^{\text{1}}}_{z}\text{ }
The  N\text{ }{{\text{N}}_{\text{2 }}}molecule contains a total of 14 electrons in it. These 14 electrons are arranged in the molecular orbitals. The MOT is as shown below,

We can write the molecular orbital configuration of  N\text{ }{{\text{N}}_{\text{2 }}} . The molecular orbital configuration of  Be2\text{ B}{{\text{e}}_{\text{2}}} the molecule is as follows:
 !!σ!! 1s2, !!σ!! *1s2!!σ!! 2s2 !!σ!! *2s2 , !!π!! 2py2 = !!π!! 2px2 , !!σ!! 2pz2 \text{ }\\!\\!\sigma\\!\\!\text{ 1}{{\text{s}}^{\text{2}}}\text{,}{{\text{ }\\!\\!\sigma\\!\\!\text{ }}^{\text{*}}}\text{1}{{\text{s}}^{\text{2}}}\text{, }\\!\\!\sigma\\!\\!\text{ 2}{{\text{s}}^{\text{2}}}\text{, }{{\text{ }\\!\\!\sigma\\!\\!\text{ }}^{\text{*}}}\text{2}{{\text{s}}^{\text{2}}}\text{ , }\\!\\!\pi\\!\\!\text{ 2p}_{\text{y}}^{\text{2}}\text{ = }\\!\\!\pi\\!\\!\text{ 2p}_{\text{x}}^{\text{2}}\text{ , }\\!\\!\sigma\\!\\!\text{ 2p}_{\text{z}}^{\text{2}}\text{ }
Since, here all molecular orbitals contain the two electrons. These are all paired electrons. Thus  N\text{ }{{\text{N}}_{\text{2 }}} the molecule is diamagnetic.
C)  C\text{ }{{\text{C}}_{\text{2 }}} Molecule: The carbon atom has two electrons in the 2p shell and 4 electrons in the innermost shell. The electronic configuration of nitrogen atom is as shown below, C = 1s2 2s2 2p1x= 2p1y=2p0z \text{ C = 1}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{p}}^{\text{1}}}_{\text{x}}\text{= 2}{{\text{p}}^{\text{1}}}_{\text{y}}=\text{2}{{\text{p}}^{0}}_{z}\text{ }
The  C\text{ }{{\text{C}}_{\text{2 }}}molecule contains a total of 12 electrons in it. These 12 electrons are arranged in the molecular orbitals.
The MOT is as shown below,


we can write the molecular orbital configuration of  C\text{ }{{\text{C}}_{\text{2 }}} . The molecular orbital configuration of  C2\text{ }{{\text{C}}_{\text{2}}} the molecule is as follows:
 !!σ!! 1s2, !!σ!! *1s2!!σ!! 2s2 !!σ!! *2s2 , !!σ!! 2pz2, !!π!! 2py1 = !!π!! 2px1 \text{ }\\!\\!\sigma\\!\\!\text{ 1}{{\text{s}}^{\text{2}}}\text{,}{{\text{ }\\!\\!\sigma\\!\\!\text{ }}^{\text{*}}}\text{1}{{\text{s}}^{\text{2}}}\text{, }\\!\\!\sigma\\!\\!\text{ 2}{{\text{s}}^{\text{2}}}\text{, }{{\text{ }\\!\\!\sigma\\!\\!\text{ }}^{\text{*}}}\text{2}{{\text{s}}^{\text{2}}}\text{ , }\\!\\!\sigma\\!\\!\text{ 2p}_{\text{z}}^{\text{2}},\text{ }\\!\\!\pi\\!\\!\text{ 2p}_{\text{y}}^{1}\text{ = }\\!\\!\pi\\!\\!\text{ 2p}_{\text{x}}^{1}\text{ }
Since the pi molecular orbitals contain unpaired electrons. Thus  C\text{ }{{\text{C}}_{\text{2 }}} the molecule is paramagnetic.
D)  B\text{ }{{\text{B}}_{\text{2 }}}molecule: The boron atom has one electron in the 2p shell and 4 electrons in the innermost shell. The electronic configuration of nitrogen atom is as shown below,
 B = 1s2 2s2 2p1x= 2p0y=2p0z \text{ B = 1}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{s}}^{\text{2}}}\text{ 2}{{\text{p}}^{\text{1}}}_{\text{x}}\text{= 2}{{\text{p}}^{0}}_{\text{y}}=\text{2}{{\text{p}}^{0}}_{z}\text{ }
The  B\text{ }{{\text{B}}_{\text{2 }}}molecule contains a total of 10 electrons in it. These 10 electrons are arranged in the molecular orbitals.
The MOT is as shown below,

We can write the molecular orbital configuration of  B\text{ }{{\text{B}}_{\text{2 }}} . The molecular orbital configuration of  B\text{ }{{\text{B}}_{\text{2 }}} the molecule is as follows: !!σ!! 1s2, !!σ!! *1s2!!σ!! 2s2 !!σ!! *2s2 , !!σ!! 2pz2 \text{ }\\!\\!\sigma\\!\\!\text{ 1}{{\text{s}}^{\text{2}}}\text{,}{{\text{ }\\!\\!\sigma\\!\\!\text{ }}^{\text{*}}}\text{1}{{\text{s}}^{\text{2}}}\text{, }\\!\\!\sigma\\!\\!\text{ 2}{{\text{s}}^{\text{2}}}\text{, }{{\text{ }\\!\\!\sigma\\!\\!\text{ }}^{\text{*}}}\text{2}{{\text{s}}^{\text{2}}}\text{ , }\\!\\!\sigma\\!\\!\text{ 2p}_{\text{z}}^{\text{2}}\text{ }
Since the molecular orbitals theory does not contain the unpaired electron. Thus  B\text{ }{{\text{B}}_{\text{2 }}} the molecule is diamagnetic.
Thus, from here we know that only  C\text{ }{{\text{C}}_{\text{2 }}} molecule is paramagnetic.

Hence, (C) is the correct option.

Note: Note that, in atoms like  Li \text{ Li } ,  Be \text{ Be } ,  C \text{ C } ,  N \text{ N } the energy difference is very small between the  2s \text{ 2s } and  2p \text{ 2p } orbitals. These are close to each other and thus p and s orbitals combine and lead to change in the expected order of the orbital energies. Here, we are not considering the mixing of s and p orbitals thus the carbon molecule is paramagnetic otherwise if we consider the mixing then the carbon molecule is diamagnetic.