Solveeit Logo

Question

Physics Question on Gravitational Potential Energy

Assume the earth's orbit around the sun as circular and the distance between their centers as 'D' mass of the earth is 'M' and its radius is 'R' If earth has an angular velocity ω0'\omega_0' with respect to its center and ω'\omega' with respect to the center of the sun, the total kinetic energy of the earth is:

A

MR2ω025[1+(ωω0)+52(DωRω0)2]\frac{MR^2\omega^2_0}{5}\left[1+\left(\frac{\omega}{\omega_0}\right)+\frac{5}{2}\left(\frac{D\omega}{R\omega_0}\right)^2\right]

B

MR2ω025[1+52(DωRω0)2]\frac{MR^2\omega^2_0}{5}\left[1+\frac{5}{2}\left(\frac{D\omega}{R\omega_0}\right)^2\right]

C

25MR2ω02[1+52(DωRω0)2]\frac{2}{5}MR^2\omega^2_0\left[1+\frac{5}{2}\left(\frac{D\omega}{R\omega_0}\right)^2\right]

D

25MR2ω02[1+(ωω0)+52(DωRω0)2]\frac{2}{5}MR^2\omega^2_0\left[1+\left(\frac{\omega}{\omega_0}\right)+\frac{5}{2}\left(\frac{D\omega}{R\omega_0}\right)^2\right]

Answer

MR2ω025[1+(ωω0)+52(DωRω0)2]\frac{MR^2\omega^2_0}{5}\left[1+\left(\frac{\omega}{\omega_0}\right)+\frac{5}{2}\left(\frac{D\omega}{R\omega_0}\right)^2\right]

Explanation

Solution

Total kinetic energy = 12Iω02+12mν2+12Iω2\frac{1}{2} \, I \, \omega^2_0 + \frac{1}{2} m \nu^2 + \frac{1}{2} I \, \omega^2 12[25MR2]ω02+12MD2ω2+12[25MR2]ω2\frac{1}{2} \left[ \frac{2}{5} MR^2\right] \omega_0^2 + \frac{1}{2}MD^2\omega^2 + \frac{1}{2} \left[ \frac{2}{5} MR^2 \right] \omega^2 = MR2ω025[1+ω2ω02+52D2ω2R2ω02]\frac{MR^2 \omega^2_0}{5} \left[ 1 + \frac{\omega^2}{\omega_0^2} + \frac{5}{2} \frac{D^2 \omega^2}{R^2 \omega^2_0} \right] (or) MR2ω025[1+52(D2ω2R2ω02)]\frac{MR^2 \omega^2_0}{5} \left[ 1 + \frac{5}{2} \left( \frac{D^2 \omega^2}{R^2 \omega^2_0}\right) \right]