Solveeit Logo

Question

Question: Assume that the decomposition of \(\text{ HN}{{\text{O}}_{\text{3 }}}\) can be represented by the fo...

Assume that the decomposition of  HNO\text{ HN}{{\text{O}}_{\text{3 }}} can be represented by the following equation:
 4HNO(g) 4NO2(g) + 2H2O(g) + O2 (g) \text{ 4HN}{{\text{O}}_{\text{3 }}}(g)\text{ }\rightleftharpoons \text{4N}{{\text{O}}_{\text{2}}}(g)\text{ + 2}{{\text{H}}_{\text{2}}}\text{O}(g)\text{ + }{{\text{O}}_{\text{2}}}\text{ }(g)\text{ }
The reaction approaches equilibrium at  400 K \text{ 400 K } temperature and 30 atm pressure. At equilibrium, the partial pressure of  HNO\text{ HN}{{\text{O}}_{\text{3 }}} is 2 atm.
The value of  K(mol/L3\text{ }{{\text{K}}_{\text{C }}}(\text{mol/}{{\text{L}}^{\text{3}}}\text{) } at  400 K \text{ 400 K } is:
(Use  R = 0.08 atm L/mol K \text{ R = 0}\text{.08 atm L/mol K } )

Explanation

Solution

The equilibrium constant can be written in terms of activities , partial pressure , molar concentration or mole fraction. The equilibrium constant in terms of molar concentration and partial pressure is related as follows:
 K= K(RT)Δn \text{ }{{\text{K}}_{\text{P }}}=\text{ }{{\text{K}}_{\text{C }}}{{\left( \text{RT} \right)}^{\Delta n}}\text{ }
Where ,  K\text{ }{{\text{K}}_{\text{P }}} is the partial pressure equilibrium constant , K\text{ }{{\text{K}}_{\text{C }}} is the equilibrium constant in terms of molar concentration , R is gas constant , T is temperature and  Δ\text{ }\Delta \text{n } is the difference in the number of moles of product and reactant.

Complete Solution :
Nitric acid  HNO\text{ HN}{{\text{O}}_{\text{3 }}} dissociated to give  NO2 \text{ N}{{\text{O}}_{\text{2}}}\text{ } ,  H2\text{ }{{\text{H}}_{\text{2}}}\text{O } and oxygen gas  O\text{ }{{\text{O}}_{\text{2 }}} four moles of  HNO\text{ HN}{{\text{O}}_{\text{3 }}} gives four moles of  NO2 \text{ N}{{\text{O}}_{\text{2}}}\text{ }, two moles of  H2\text{ }{{\text{H}}_{\text{2}}}\text{O }and one mole of water. If we start with one mole of  HNO\text{ HN}{{\text{O}}_{\text{3 }}} and if  !!α!! \text{ }\\!\\!\alpha\\!\\!\text{ } is the degree of dissociation .Then the dissociation of  HNO\text{ HN}{{\text{O}}_{\text{3 }}} is written as follows:
 4 HNO 4NO\+2H2O\+O2 Before1000 After(1α)4α2αα  \,\text{ }\begin{matrix} {} & 4\text{ HN}{{\text{O}}_{\text{3 }}} & \rightleftharpoons & \text{ 4N}{{\text{O}}_{\text{2 }}} & \+ & 2{{\text{H}}_{\text{2}}}\text{O} & \+ & {{\text{O}}_{\text{2}}} \\\ \text{Before} & 1 & {} & 0 & {} & 0 & {} & 0 \\\ \text{After} & \left( 1-\alpha \right) & {} & 4\alpha & {} & 2\alpha & {} & \alpha \\\ \end{matrix}\text{ }
The equilibrium constant  K\text{ }{{\text{K}}_{\text{p }}} for the dissociation of  HNO\text{ HN}{{\text{O}}_{\text{3 }}} is written as,
 K= PNO24×PH2O×PO2PHNO34 \text{ }{{\text{K}}_{\text{P }}}=\text{ }\dfrac{\text{P}_{\text{N}{{\text{O}}_{\text{2}}}}^{4}\times {{\text{P}}_{{{\text{H}}_{\text{2}}}\text{O}}}\times {{\text{P}}_{{{\text{O}}_{\text{2}}}}}}{\text{P}_{\text{HN}{{\text{O}}_{3}}}^{4}}\text{ } (1)
The total pressure of the reaction is calculated as follows,
 PTotal = PHNO3+PNO2+PO2+PH2O \text{ }{{\text{P}}_{\text{Total}}}\text{ = }{{\text{P}}_{\text{HN}{{\text{O}}_{\text{3}}}}}+{{\text{P}}_{\text{N}{{\text{O}}_{\text{2}}}}}+{{\text{P}}_{{{\text{O}}_{\text{2}}}}}+{{\text{P}}_{{{\text{H}}_{\text{2}}}\text{O}}}\text{ }
Let's write down the pressure of nitrogen dioxide and water in terms of oxygen. We have,
 PNO2=4PO2  PH2O=2PO2 \begin{aligned} & \text{ }{{\text{P}}_{\text{N}{{\text{O}}_{\text{2}}}}}=4{{\text{P}}_{{{\text{O}}_{\text{2}}}}} \\\ & \text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}\text{O}}}=2{{\text{P}}_{{{\text{O}}_{\text{2}}}}} \\\ \end{aligned}
Then total pressure of the reaction is written as,
 PTotal = PHNO3+4PO2+PO2+2PO2  PTotal = PHNO3+7PO2 \begin{aligned} & \text{ }{{\text{P}}_{\text{Total}}}\text{ = }{{\text{P}}_{\text{HN}{{\text{O}}_{\text{3}}}}}+4{{\text{P}}_{{{\text{O}}_{\text{2}}}}}+{{\text{P}}_{{{\text{O}}_{\text{2}}}}}+2{{\text{P}}_{{{\text{O}}_{\text{2}}}}} \\\ & \Rightarrow \text{ }{{\text{P}}_{\text{Total}}}\text{ = }{{\text{P}}_{\text{HN}{{\text{O}}_{\text{3}}}}}+7{{\text{P}}_{{{\text{O}}_{\text{2}}}}} \\\ \end{aligned}
The total pressure of the reaction is given as 30 atm and the partial pressure of  HNO\text{ HN}{{\text{O}}_{\text{3 }}}is equal to 2 atm.Lets substitute these values in total vapour pressure .we have,
  PTotal = PHNO3+7PO2 PO2=3027=287=4 atm  \begin{aligned} & \text{ }\Rightarrow \text{ }{{\text{P}}_{\text{Total}}}\text{ = }{{\text{P}}_{\text{HN}{{\text{O}}_{\text{3}}}}}+7{{\text{P}}_{{{\text{O}}_{\text{2}}}}} \\\ & \Rightarrow {{\text{P}}_{{{\text{O}}_{\text{2}}}}}=\dfrac{30-2}{7}=\dfrac{28}{7}=4\text{ atm } \\\ \end{aligned}
Therefore, partial pressure of oxygen gas is 4 atm.
Now let’s substitute value of pressure of oxygen, nitric acid, water in equation (1).we have,
 K= PNO24×PH2O×PO2PHNO34 =(4×PO2)4×(2×PO2)×PO2(4)4 K=(4×4)4×(2×4)×4(2)4=220 \begin{aligned} & \text{ }{{\text{K}}_{\text{P }}}=\text{ }\dfrac{\text{P}_{\text{N}{{\text{O}}_{\text{2}}}}^{4}\times {{\text{P}}_{{{\text{H}}_{\text{2}}}\text{O}}}\times {{\text{P}}_{{{\text{O}}_{\text{2}}}}}}{\text{P}_{\text{HN}{{\text{O}}_{3}}}^{4}}\text{ =}\dfrac{{{\left( 4\times {{\text{P}}_{{{\text{O}}_{\text{2}}}}} \right)}^{4}}\times \left( 2\times {{\text{P}}_{{{\text{O}}_{\text{2}}}}} \right)\times {{\text{P}}_{{{\text{O}}_{\text{2}}}}}}{{{\left( 4 \right)}^{4}}} \\\ & \Rightarrow {{\text{K}}_{\text{P }}}=\dfrac{{{\left( 4\times 4 \right)}^{4}}\times \left( 2\times 4 \right)\times 4}{{{\left( 2 \right)}^{4}}}={{2}^{20}}\, \\\ \end{aligned}
The equilibrium constant at pressure  K\text{ }{{\text{K}}_{\text{P }}} and concentration  K\text{ }{{\text{K}}_{\text{C }}} are related by the following relation.
 K= K(RT)Δn \text{ }{{\text{K}}_{\text{P }}}=\text{ }{{\text{K}}_{\text{C }}}{{\left( \text{RT} \right)}^{\Delta n}}\text{ }
The  Δ\text{ }\Delta \text{n } for reaction is calculated by subtracting the number of moles of products and reactant as follows,
 Δ= (4+2+1)(4) Δn=3 \begin{aligned} & \text{ }\Delta \text{n }=\text{ }\left( 4+2+1 \right)-\left( 4 \right) \\\ & \Rightarrow \Delta \text{n}=3 \\\ \end{aligned}
At last, let’s determine the equilibrium constant K\text{ }{{\text{K}}_{\text{C }}}.
 K= K(RT)Δn  K=(2)20(0.08×400)3=(2)20(32)3 K=32 \begin{aligned} & \text{ }{{\text{K}}_{\text{C }}}=\text{ }\dfrac{{{\text{K}}_{\text{P }}}}{{{\left( \text{RT} \right)}^{\Delta n}}}\text{ } \\\ & \Rightarrow {{\text{K}}_{\text{C }}}=\dfrac{{{\left( 2 \right)}^{20}}}{{{\left( 0.08\times 400 \right)}^{3}}}=\dfrac{{{\left( 2 \right)}^{20}}}{{{\left( 32 \right)}^{3}}} \\\ & \therefore {{\text{K}}_{\text{C }}}=32 \\\ \end{aligned}
Therefore, the equilibrium constant is 32.

Note: Note that,
i) When Δn=0 \,\Delta \text{n}=0\text{ } the value of  K= K\text{ }{{\text{K}}_{\text{C }}}=\text{ }{{\text{K}}_{\text{P }}} .
ii) When Δn>0 \,\Delta \text{n}>0\text{ }or Δn<0 \,\Delta \text{n}<0\text{ }the value of  K K\text{ }{{\text{K}}_{\text{C }}}\ne \text{ }{{\text{K}}_{\text{P }}} .
The values of  K\text{ }{{\text{K}}_{\text{C }}} and  K\text{ }{{\text{K}}_{\text{P }}} are independent of its units in which the partial pressure and molar concentration of various species are expressed.