Solveeit Logo

Question

Question: Assume that each reaction is carried out in an open container. Select a reaction for which \(\Delta ...

Assume that each reaction is carried out in an open container. Select a reaction for which ΔH = ΔE\Delta {\text{H}}\,{\text{ = }}\,\Delta {\text{E}}\,.
A. H2(g)+Br2(g)2HBr(g){{\text{H}}_{\text{2}}}\left( {\text{g}} \right)\, + {\text{B}}{{\text{r}}_{\text{2}}}\left( {\text{g}} \right) \to \,2\,{\text{HBr}}\,\left( {\text{g}} \right)
B. C(s)+2H2O(g)2H2(g)+CO2(g){\text{C}}\left( {\text{s}} \right)\, + 2\,{{\text{H}}_{\text{2}}}{\text{O}}\left( {\text{g}} \right) \to \,2\,{{\text{H}}_2}\left( {\text{g}} \right) + \,{\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right)
C. PCl5(g)PCl3(g)+Cl2(g){\text{PC}}{{\text{l}}_5}\left( {\text{g}} \right)\, \to \,{\text{PC}}{{\text{l}}_{\text{3}}}\,\left( {\text{g}} \right) + {\text{C}}{{\text{l}}_{\text{2}}}\left( {\text{g}} \right)
D. 2CO(g)+O2(g)2CO2(g){\text{2}}\,{\text{CO}}\left( {\text{g}} \right)\, + {{\text{O}}_{\text{2}}}\left( {\text{g}} \right) \to \,2{\text{C}}{{\text{O}}_2}\left( {\text{g}} \right)

Explanation

Solution

We will use the relation of ΔH\Delta {\text{H}} and ΔE\Delta {\text{E}} with the number of moles. When a chemical reaction takes place in an open container, the number of moles of the species changes. The number of moles of gaseous species affects the ΔH\Delta {\text{H}} and ΔE\Delta {\text{E}}.

Formula used: ΔH = ΔEΔngRT\Delta {\text{H}}\,{\text{ = }}\,\Delta {\text{E}}\, - \Delta {{\text{n}}_g}{\text{RT}}

Complete step by step answer:
The relation between ΔH\Delta {\text{H}} and ΔE\Delta {\text{E}} is as follows:
ΔH = ΔEΔngRT\Delta {\text{H}}\,{\text{ = }}\,\Delta {\text{E}}\, - \Delta {{\text{n}}_g}{\text{RT}}
Where,
ΔH\Delta {\text{H}} is the change in enthalpy.
ΔE\Delta {\text{E}} is the change in internal energy.
Δng\Delta {{\text{n}}_g} is the change in the number of moles of gaseous species.
R{\text{R}} is the gas constant.
T{\text{T}} is temperature.
The change in the number of moles of gaseous species Δng\Delta {{\text{n}}_g} is calculated as follows:
Δng=npnR\Delta {{\text{n}}_g} = \,\sum {n_p} - \sum {n_R}
Where,
np\sum {n_p} is the sum of the number of moles of all gaseous species present on the product side.
nR\sum {n_R} is the sum of the number of moles of all gaseous species present on the reactant side.
Determine the Δng\Delta {{\text{n}}_g} for each reaction as follows:
For-H2(g)+Br2(g)2HBr(g){{\text{H}}_{\text{2}}}\left( {\text{g}} \right)\, + {\text{B}}{{\text{r}}_{\text{2}}}\left( {\text{g}} \right) \to \,2\,{\text{HBr}}\,\left( {\text{g}} \right)
Δng=22\Delta {{\text{n}}_g} = \,2 - 2
Δng=0\Delta {{\text{n}}_g} = 0
So, on substituting Δng=0\Delta {{\text{n}}_g} = 0 in ΔH\Delta {\text{H}} and ΔE\Delta {\text{E}} relation we get,
ΔH = ΔE0×RT\Delta {\text{H}}\,{\text{ = }}\,\Delta {\text{E}}\, - 0\, \times {\text{RT}}
ΔH = ΔE\Delta {\text{H}}\,{\text{ = }}\,\Delta {\text{E}}
So, for H2(g)+Br2(g)2HBr(g){{\text{H}}_{\text{2}}}\left( {\text{g}} \right)\, + {\text{B}}{{\text{r}}_{\text{2}}}\left( {\text{g}} \right) \to \,2\,{\text{HBr}}\,\left( {\text{g}} \right) reaction,ΔH = ΔE\Delta {\text{H}}\,{\text{ = }}\,\Delta {\text{E}}\,. So, option (A) is correct.
For-C(s)+2H2O(g)2H2(g)+CO2(g){\text{C}}\left( {\text{s}} \right)\, + 2\,{{\text{H}}_{\text{2}}}{\text{O}}\left( {\text{g}} \right) \to \,2\,{{\text{H}}_2}\left( {\text{g}} \right) + \,{\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right)
Δng=32\Delta {{\text{n}}_g} = \,3 - 2
Δng=1\Delta {{\text{n}}_g} = 1
So, on substituting Δng=1\Delta {{\text{n}}_g} = 1 in ΔH\Delta {\text{H}} and ΔE\Delta {\text{E}} relation we get,
ΔH = ΔE1×RT\Delta {\text{H}}\,{\text{ = }}\,\Delta {\text{E}}\, - 1 \times {\text{RT}}
ΔHΔE\Delta {\text{H}}\, \ne \,\Delta {\text{E}}
So, for C(s)+2H2O(g)2H2(g)+CO2(g){\text{C}}\left( {\text{s}} \right)\, + 2\,{{\text{H}}_{\text{2}}}{\text{O}}\left( {\text{g}} \right) \to \,2\,{{\text{H}}_2}\left( {\text{g}} \right) + \,{\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) reaction, ΔHΔE\Delta {\text{H}}\, \ne \,\Delta {\text{E}}. So, option (B) is incorrect.
For-PCl5(g)PCl3(g)+Cl2(g){\text{PC}}{{\text{l}}_5}\left( {\text{g}} \right)\, \to \,{\text{PC}}{{\text{l}}_{\text{3}}}\,\left( {\text{g}} \right) + {\text{C}}{{\text{l}}_{\text{2}}}\left( {\text{g}} \right)
Δng=21\Delta {{\text{n}}_g} = \,2 - 1
Δng=1\Delta {{\text{n}}_g} = 1
So, on substituting Δng=1\Delta {{\text{n}}_g} = 1 in ΔH\Delta {\text{H}} and ΔE\Delta {\text{E}} relation we get,
ΔH = ΔE1×RT\Delta {\text{H}}\,{\text{ = }}\,\Delta {\text{E}}\, - 1 \times {\text{RT}}
ΔHΔE\Delta {\text{H}}\, \ne \,\Delta {\text{E}}
So, for PCl5(g)PCl3(g)+Cl2(g){\text{PC}}{{\text{l}}_5}\left( {\text{g}} \right)\, \to \,{\text{PC}}{{\text{l}}_{\text{3}}}\,\left( {\text{g}} \right) + {\text{C}}{{\text{l}}_{\text{2}}}\left( {\text{g}} \right) reaction, ΔHΔE\Delta {\text{H}}\, \ne \,\Delta {\text{E}}. So, option (C) is incorrect.
For-2CO(g)+O2(g)2CO2(g){\text{2}}\,{\text{CO}}\left( {\text{g}} \right)\, + {{\text{O}}_{\text{2}}}\left( {\text{g}} \right) \to \,2{\text{C}}{{\text{O}}_2}\left( {\text{g}} \right)
Δng=23\Delta {{\text{n}}_g} = \,2 - 3
Δng=1\Delta {{\text{n}}_g} = - 1
So, on substituting Δng=1\Delta {{\text{n}}_g} = - 1 in ΔH\Delta {\text{H}} and ΔE\Delta {\text{E}} relation we get,
ΔH = ΔE(1×RT)\Delta {\text{H}}\,{\text{ = }}\,\Delta {\text{E}}\, - \left( { - 1 \times {\text{RT}}} \right)
ΔHΔE\Delta {\text{H}}\, \ne \,\Delta {\text{E}}
So, for 2CO(g)+O2(g)2CO2(g){\text{2}}\,{\text{CO}}\left( {\text{g}} \right)\, + {{\text{O}}_{\text{2}}}\left( {\text{g}} \right) \to \,2{\text{C}}{{\text{O}}_2}\left( {\text{g}} \right) reaction, ΔHΔE\Delta {\text{H}}\, \ne \,\Delta {\text{E}}. So, option (D) is incorrect.

Therefore, option (A) H2(g)+Br2(g)2HBr(g){{\text{H}}_{\text{2}}}\left( {\text{g}} \right)\, + {\text{B}}{{\text{r}}_{\text{2}}}\left( {\text{g}} \right) \to \,2\,{\text{HBr}}\,\left( {\text{g}} \right), is correct.

Note: The change in the number of the mole is calculated only for gaseous species A chemical reaction for whichnp>nR\sum {n_p} > \sum {n_R}the relation between ΔH\Delta {\text{H}}andΔE\Delta {\text{E}}is ΔH<ΔE\Delta {\text{H}}\,\, < \Delta {\text{E}}. A chemical reaction for whichnp<nR\sum {n_p} < \sum {n_R}the relation between ΔH\Delta {\text{H}}andΔE\Delta {\text{E}}is ΔH>ΔE\Delta {\text{H}}\,\, > \Delta {\text{E}}.