Solveeit Logo

Question

Question: Assume that clouds are distributed around the entire earth at a height of 3000m above the ground. Th...

Assume that clouds are distributed around the entire earth at a height of 3000m above the ground. The atmosphere can be modeled as a spherical capacitor with the earth as one plate and the cloud as other. When the electric field between the earth and the cloud becomes large, the air begins to conduct and the phenomena is called lightning. On a typical day 4×105C4 \times 10^5 C of positive charge is spread over the surface of the earth and equal amount of negative charge is there on the cloud. Resistivity of the air is ρ=3×1013Ωm\rho = 3 \times 10^{13} \Omega m and radius of the earth = 6000km. (a) Find the resistance of the air gap between the earth's surface and cloud. (b) Estimate the potential difference between the surface of the earth and the cloud (c) In how much time the capacitor formed between the earth and the cloud will lose 63% of the charge?

Answer

(a) 198.9 Ω (b) 3 × 10^5 V (c) 265.5 s

Explanation

Solution

The problem describes the Earth-cloud system as a spherical capacitor, with the Earth as the inner plate and the cloud as the outer plate. The air between them acts as a dielectric and a resistive medium.

Given values:

  • Height of cloud, h=3000 m=3×103 mh = 3000 \text{ m} = 3 \times 10^3 \text{ m}
  • Charge, Q=4×105 CQ = 4 \times 10^5 \text{ C}
  • Resistivity of air, ρ=3×1013Ω m\rho = 3 \times 10^{13} \Omega \text{ m}
  • Radius of Earth, RE=6000 km=6×106 mR_E = 6000 \text{ km} = 6 \times 10^6 \text{ m}
  • Permittivity of free space, ϵ0=8.85×1012 F/m\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}

Let R1=RER_1 = R_E be the inner radius and R2=RE+hR_2 = R_E + h be the outer radius. R1=6×106 mR_1 = 6 \times 10^6 \text{ m} R2=6×106+3×103=6.003×106 mR_2 = 6 \times 10^6 + 3 \times 10^3 = 6.003 \times 10^6 \text{ m}

(a) Find the resistance of the air gap between the earth's surface and cloud.

For a spherical shell of thickness drdr at radius rr, the differential resistance dRdR is given by: dR=ρdr4πr2dR = \rho \frac{dr}{4\pi r^2} To find the total resistance RR, we integrate dRdR from R1R_1 to R2R_2: R=R1R2ρ4πr2dr=ρ4π[1r]R1R2R = \int_{R_1}^{R_2} \frac{\rho}{4\pi r^2} dr = \frac{\rho}{4\pi} \left[ -\frac{1}{r} \right]_{R_1}^{R_2} R=ρ4π(1R11R2)R = \frac{\rho}{4\pi} \left( \frac{1}{R_1} - \frac{1}{R_2} \right) Substitute the values: R=3×1013Ω m4π(16×106 m16.003×106 m)R = \frac{3 \times 10^{13} \Omega \text{ m}}{4\pi} \left( \frac{1}{6 \times 10^6 \text{ m}} - \frac{1}{6.003 \times 10^6 \text{ m}} \right) R=3×10134π(6.003×1066×106(6×106)(6.003×106))R = \frac{3 \times 10^{13}}{4\pi} \left( \frac{6.003 \times 10^6 - 6 \times 10^6}{(6 \times 10^6)(6.003 \times 10^6)} \right) R=3×10134π(0.003×10636.018×1012)R = \frac{3 \times 10^{13}}{4\pi} \left( \frac{0.003 \times 10^6}{36.018 \times 10^{12}} \right) R=3×10134π(3×1033.6018×1013)R = \frac{3 \times 10^{13}}{4\pi} \left( \frac{3 \times 10^3}{3.6018 \times 10^{13}} \right) R=9×10164π×3.6018×1013=9×1034π×3.6018R = \frac{9 \times 10^{16}}{4\pi \times 3.6018 \times 10^{13}} = \frac{9 \times 10^3}{4\pi \times 3.6018} R900012.566×3.6018900045.25198.89ΩR \approx \frac{9000}{12.566 \times 3.6018} \approx \frac{9000}{45.25} \approx 198.89 \Omega

Since hREh \ll R_E, we can also use the parallel plate approximation for resistance: RρhAR \approx \rho \frac{h}{A}, where A=4πRE2A = 4\pi R_E^2. R3×1013Ω m×3×103 m4π(6×106 m)2=9×10164π×36×1012=9×104144π90000452.39198.9ΩR \approx \frac{3 \times 10^{13} \Omega \text{ m} \times 3 \times 10^3 \text{ m}}{4\pi (6 \times 10^6 \text{ m})^2} = \frac{9 \times 10^{16}}{4\pi \times 36 \times 10^{12}} = \frac{9 \times 10^4}{144\pi} \approx \frac{90000}{452.39} \approx 198.9 \Omega. The results are consistent.

(b) Estimate the potential difference between the surface of the earth and the cloud.

First, calculate the capacitance CC of the spherical capacitor: C=4πϵ0R1R2R2R1=4πϵ0RE(RE+h)hC = 4\pi \epsilon_0 \frac{R_1 R_2}{R_2 - R_1} = 4\pi \epsilon_0 \frac{R_E (R_E+h)}{h} Substitute the values: C=4π(8.85×1012 F/m)(6×106 m)(6.003×106 m)3×103 mC = 4\pi (8.85 \times 10^{-12} \text{ F/m}) \frac{(6 \times 10^6 \text{ m})(6.003 \times 10^6 \text{ m})}{3 \times 10^3 \text{ m}} C=4π(8.85×1012)36.018×10123×103C = 4\pi (8.85 \times 10^{-12}) \frac{36.018 \times 10^{12}}{3 \times 10^3} C=4π(8.85×1012)(12.006×109)C = 4\pi (8.85 \times 10^{-12}) (12.006 \times 10^9) C=4π×8.85×12.006×103 FC = 4\pi \times 8.85 \times 12.006 \times 10^{-3} \text{ F} C1.3357 FC \approx 1.3357 \text{ F}

Now, calculate the potential difference V=Q/CV = Q/C: V=4×105 C1.3357 FV = \frac{4 \times 10^5 \text{ C}}{1.3357 \text{ F}} V2.994×105 V3×105 VV \approx 2.994 \times 10^5 \text{ V} \approx 3 \times 10^5 \text{ V}

(c) In how much time the capacitor formed between the earth and the cloud will lose 63% of the charge?

The discharge of a capacitor through a resistor is governed by the equation Q(t)=Q0et/τQ(t) = Q_0 e^{-t/\tau}, where τ=RC\tau = RC is the time constant. Losing 63% of the charge means the remaining charge is Q(t)=Q00.63Q0=0.37Q0Q(t) = Q_0 - 0.63 Q_0 = 0.37 Q_0. So, 0.37Q0=Q0et/τ0.37 Q_0 = Q_0 e^{-t/\tau} 0.37=et/τ0.37 = e^{-t/\tau} Taking natural logarithm on both sides: ln(0.37)=t/τ\ln(0.37) = -t/\tau 0.994=t/τ-0.994 = -t/\tau t0.994ττt \approx 0.994 \tau \approx \tau

This means that the time taken to lose 63% of the charge is approximately equal to the time constant τ\tau. τ=RC\tau = RC τ=(198.89Ω)×(1.3357 F)\tau = (198.89 \Omega) \times (1.3357 \text{ F}) τ265.5 s\tau \approx 265.5 \text{ s}

The time required is approximately 265.5 seconds.