Solveeit Logo

Question

Question: Assume an imaginary world, where angular momentum is quantized to even multiple \(\hslash\). Find th...

Assume an imaginary world, where angular momentum is quantized to even multiple \hslash. Find the longest possible wavelength emitted by Hydrogen in the visible spectrum.

A

700nm

B

484 nm

C

600nm

D

584 nm

Answer

484 nm

Explanation

Solution

Mvr = 2 n\hslash

or mv = 2nr\frac{2n\hslash}{r}

mv2 = m2v2n\frac{m^{2}v^{2}}{n} = (2n)2mr2\frac{(2n\hslash)^{2}}{mr^{2}}

Ze24πε0r2\frac{Ze^{2}}{4\pi\varepsilon_{0}r^{2}} = mv2r\frac{mv^{2}}{r}

or Ze24πε0r2\frac{Ze^{2}}{4\pi\varepsilon_{0}r^{2}} = (2n)mr2(r)\frac{(2n\hslash)}{mr^{2}(r)}

or r = (2n)24πε0mZe2\frac{(2n\hslash)24\pi\varepsilon_{0}}{mZe^{2}}

be = k + e = Ze28πε0r\frac{–Ze^{2}}{8\pi\varepsilon_{0}r} = Z2e4m8πε0(2n)24πε0\frac{–Z^{2}e^{4}m}{8\pi\varepsilon_{0}(2n\hslash)^{2}4\pi\varepsilon_{0}}

= Z2e4m32ε0n2h2\frac{–Z^{2}e^{4}m}{32\varepsilon_{0}n^{2}h^{2}}

BE = 3.4n2\frac{–3.4}{n^{2}}eV for Hydrogen. To find longest wavelength hn = 3.4 [114]\left\lbrack 1–\frac{1}{4} \right\rbrack

= 3.4 × 34\frac{3}{4} = 2.55

l (nm) = 12502.55\frac{1250}{2.55} = 484 nm