Solveeit Logo

Question

Physics Question on Electromagnetic waves

Assume a bulb of efficiency 2.5%2.5\% as a point source. The peak values of electric and magnetic fields produced by the radiation coming from a 100W100\, W bulb at a distance of 3m3\, m is respectively

A

2.5Vm12.5 \,V \,m^{-1}, 3.6×108T3.6 \times 10^{-8}\, T

B

4.2Vm14.2 \,V \,m^{-1}, 2.8×108T2.8 \times 10^{-8}\, T

C

4.08Vm14.08 \,V \,m^{-1}, 1.36×108T1.36 \times 10^{-8}\, T

D

3.6Vm13.6 \,V \,m^{-1}, 4.2×108T4.2 \times 10^{-8}\, T

Answer

4.08Vm14.08 \,V \,m^{-1}, 1.36×108T1.36 \times 10^{-8}\, T

Explanation

Solution

Here intensity, I=powerareaI = \frac{power}{area} =100×2.54π(3)2×100= \frac{100 \times 2.5}{4\pi \left(3\right)^{2} \times 100} =2.536πWm2= \frac{2.5}{36\pi} W\,m^{-2} Half of this intensity belongs to electric field and half of that to magnetic field. I2=I4ε0E02c\therefore\quad \frac{I}{2} = \frac{I}{4} \varepsilon_{0}\,E^{2}_{0}\,c or E0=2Iε0c\quad E_{0}= \sqrt{\frac{2I}{\varepsilon_{0}c}} =2×2.536π14π×9×109×3×108= \sqrt{\frac{2 \times \frac{2.5}{36\pi}}{\frac{1}{4\pi \times9\times 10^{9}} \times 3 \times 10^{8}}} =4.08Vm1= 4.08\,V\,m^{-1} B0=E0c=4.083×108\therefore\quad B_{0} = \frac{E_{0}}{c} = \frac{4.08}{3 \times 10^{8}} =1.36×108T= 1.36 \times 10^{-8}\,T