Question
Question: ASSERTION If \(A = \left( {\begin{array}{*{20}{c}} 2&0&{ - 1} \\\ 5&1&0 \\\ 0&1&3 ...
ASSERTION
If A = \left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\\
5&1&0 \\\
0&1&3
\end{array}} \right) then adj(adjA)=A
REASON
∣adj⋅(adj⋅A)∣=∣A∣(n−1)2, A is a nonsingular matrix of order N.
(A)Both (A) & (R) are individually true & (R) is correct explanation of (A),
(B)Both (A) & (R) are individually true but (R) is not the correct (proper explanation of (A).
(C)(A) is true but (R) is false,
(D) (A) is false but (R) is true.
Solution
Hint : Use properties and prove the assertion and reason relations.
First, we are going to use the property of adjoint which is adj(adjA)=∣A∣(n−2)A, with that we are going to find ∣A∣, such that it proves the assertion statement and with the help of the same property we are going to prove the reason statement and then find the relation between them and choose the option.
Complete step-by-step answer :
First, we are going to the given in the assertion statement which is
A = \left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\\
5&1&0 \\\
0&1&3
\end{array}} \right)
To find the adjoint(A), we are going to find the cofactor matrix of A and Then apply transpose the cofactor matrix, which will give us the adjoint matrix.
First, let is find the cofactor of each element of the given matrix and find the cofactor matrix
{C_{12}} = {\left( { - 1} \right)^{1 + 2}}\left| {\begin{array}{{20}{c}}
5&0 \\
0&3
\end{array}} \right| = - 15 \\
{C_{13}} = {\left( { - 1} \right)^{1 + 3}}\left| {\begin{array}{{20}{c}}
5&1 \\
0&1
\end{array}} \right| = 5 \\
{C_{21}} = {\left( { - 1} \right)^{2 + 1}}\left| {\begin{array}{{20}{c}}
0&{ - 1} \\
1&3
\end{array}} \right| = - 1 \\
{C_{22}} = {\left( { - 1} \right)^{2 + 2}}\left| {\begin{array}{{20}{c}}
2&{ - 1} \\
0&3
\end{array}} \right| = 6 \\
{C_{23}} = {\left( { - 1} \right)^{2 + 3}}\left| {\begin{array}{{20}{c}}
2&0 \\
0&1
\end{array}} \right| = - 2 \\
{C_{31}} = {\left( { - 1} \right)^{3 + 1}}\left| {\begin{array}{{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right| = 1 \\
{C_{32}} = {\left( { - 1} \right)^{3 + 2}}\left| {\begin{array}{{20}{c}}
2&{ - 1} \\
5&0
\end{array}} \right| = - 5 \\
{C_{11}} = {\left( { - 1} \right)^{3 + 3}}\left| {\begin{array}{{20}{c}}
2&0 \\
5&1
\end{array}} \right| = 2 \\
{C_{11}} = {\left( { - 1} \right)^{1 + 1}}\left| {\begin{array}{{20}{c}}
6&{ - 5} \\
{ - 2}&2
\end{array}} \right| = 2 \\
{C_{12}} = {\left( { - 1} \right)^{1 + 2}}\left| {\begin{array}{{20}{c}}
{ - 15}&{ - 5} \\
5&2
\end{array}} \right| = 5 \\
{C_{13}} = {\left( { - 1} \right)^{1 + 3}}\left| {\begin{array}{{20}{c}}
{ - 15}&6 \\
5&{ - 2}
\end{array}} \right| = 0 \\
{C_{21}} = {\left( { - 1} \right)^{2 + 1}}\left| {\begin{array}{{20}{c}}
{ - 1}&1 \\
{ - 2}&2
\end{array}} \right| = 0 \\
{C_{22}} = {\left( { - 1} \right)^{2 + 2}}\left| {\begin{array}{{20}{c}}
3&1 \\
5&2
\end{array}} \right| = 1 \\
{C_{23}} = {\left( { - 1} \right)^{2 + 3}}\left| {\begin{array}{{20}{c}}
3&{ - 1} \\
5&{ - 2}
\end{array}} \right| = 1 \\
{C_{31}} = {\left( { - 1} \right)^{3 + 1}}\left| {\begin{array}{{20}{c}}
{ - 1}&1 \\
6&{ - 5}
\end{array}} \right| = - 1 \\
{C_{32}} = {\left( { - 1} \right)^{3 + 2}}\left| {\begin{array}{{20}{c}}
3&1 \\
{ - 15}&{ - 5}
\end{array}} \right| = 0 \\
{C_{33}} = {\left( { - 1} \right)^{3 + 3}}\left| {\begin{array}{*{20}{c}}
3&{ - 1} \\
{ - 15}&6
\end{array}} \right| = 3 \\
\left| A \right| = \left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right) = 2 \times (3 - 1) + 0 \times (15 - 0) - 1 \times (5 - 0) \\
= 6 - 5 = 1 ;