Solveeit Logo

Question

Question: Assertion (A): The \({{n}^{\text{th}}}\) derivative of \(\sin 5x\cos 3x\) is \(\dfrac{1}{2}\left[ {{...

Assertion (A): The nth{{n}^{\text{th}}} derivative of sin5xcos3x\sin 5x\cos 3x is 12[8nsin(nπ2+8x)+2nsin(nπ2+2x)]\dfrac{1}{2}\left[ {{8}^{n}}\sin \left( \dfrac{n\pi }{2}+8x \right)+{{2}^{n}}\sin \left( \dfrac{n\pi }{2}+2x \right) \right]
Reason (R): If y=sin(ax+b)y=\sin \left( ax+b \right) then yn=ansin(ax+b+nπ2){{y}_{n}}={{a}^{n}}\sin \left( ax+b+\dfrac{n\pi }{2} \right)
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true but R is not the correct explanation of A.
(c) A is true but R is false.
(d) A is false but R is true.

Explanation

Solution

Here, in this question, we have to first we will use the Assertion statement, use the trigonometric transformation, sinAcosB12[sin(A + B)+sin(AB)]\sin \text{A}\cdot \text{cosB}\,\text{= }\dfrac{1}{2}\left[ \sin \left( \text{A + B} \right)+\sin \left( \text{A}-\text{B} \right) \right] to simplify the yy given in the Assertion statement, then let us use the formula mentioned in the Reason statement and check if the proof satisfies due to the reason statement.

Complete step by step answer:
Here, in this question, we have been given a proof to prove in the first statement that is the assertion(A), and we have also been given a second statement which is the reason (R). Let us find out if both these statements, Assertion and Reason are related to each other.
Firstly, we have been given y=sin5xcos3xy=\sin 5x\cos 3x, hence let us find its nth{{n}^{\text{th}}} derivative.
We have, y=sin5xcos3xy=\sin 5x\cos 3x
Now, from the trigonometric transformations we know,
sinAcosB12[sin(A + B)+sin(AB)]\sin \text{A}\cdot \text{cosB}\,\text{= }\dfrac{1}{2}\left[ \sin \left( \text{A + B} \right)+\sin \left( \text{A}-\text{B} \right) \right]
By using the above, formula and y=sin5xcos3xy=\sin 5x\cos 3x we get,
y=12[sin(5x+3x)+sin(5x3x)] =12[sin8x+sin2x]\begin{aligned} & y=\dfrac{1}{2}\left[ \sin \left( 5x+3x \right)+\sin \left( 5x-3x \right) \right] \\\ & =\dfrac{1}{2}\left[ \sin 8x+\sin 2x \right] \end{aligned}
We can write, sin8x=sin(8x+0)\sin 8x=\sin \left( 8x+0 \right) and sin2x=sin(2x+0)\sin 2x=\sin \left( 2x+0 \right). Also, let us find the nth{{n}^{\text{th}}}derivative by differentiating yy with respect to xx.
We know, the nth{{n}^{\text{th}}} derivative for y=sin(ax+b)y=\sin \left( ax+b \right) is yn=ansin(ax+b+nπ2){{y}_{n}}={{a}^{n}}\sin \left( ax+b+\dfrac{n\pi }{2} \right).
Now, after we differentiate yy, we get
yn=12[dndxnsin(8x+0)+dndxnsin(2x+0)]{{y}_{n}}=\dfrac{1}{2}\left[ \dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin \left( 8x+0 \right)+\dfrac{{{d}^{n}}}{d{{x}^{n}}}\sin \left( 2x+0 \right) \right]
=12[8nsin(8x+0+nπ2)+2nsin(2x+0+nπ2)]=\dfrac{1}{2}\left[ {{8}^{n}}\sin \left( 8x+0+\dfrac{n\pi }{2} \right)+{{2}^{n}}\sin \left( 2x+0+\dfrac{n\pi }{2} \right) \right]
After further simplifying the above expression, we will get
yn=12[8nsin(8x+nπ2)+2nsin(2x+nπ2)]{{y}_{n}}=\dfrac{1}{2}\left[ {{8}^{n}}\sin \left( 8x+\dfrac{n\pi }{2} \right)+{{2}^{n}}\sin \left( 2x+\dfrac{n\pi }{2} \right) \right]
We got the above proof, that the nth{{n}^{\text{th}}} derivative of sin5xcos3x\sin 5x\cos 3x is yn=12[8nsin(8x+nπ2)+2nsin(2x+nπ2)]{{y}_{n}}=\dfrac{1}{2}\left[ {{8}^{n}}\sin \left( 8x+\dfrac{n\pi }{2} \right)+{{2}^{n}}\sin \left( 2x+\dfrac{n\pi }{2} \right) \right]
But the proof is satisfied with the help of the nth{{n}^{\text{th}}} derivative for y=sin(ax+b)y=\sin \left( ax+b \right) is yn=ansin(ax+b+nπ2){{y}_{n}}={{a}^{n}}\sin \left( ax+b+\dfrac{n\pi }{2} \right).

So, the correct answer is “Option A”.

Note: This question is in the form of successive differentiation. Successive differentiation is the process of differentiating the given function successively ‘n’ times which will give us successive derivatives. The nth{{n}^{\text{th}}} derivative is shown by dnxdxn\dfrac{{{d}^{n}}x}{d{{x}^{n}}}, for n = 1, 2, 3, and so on, these can also be denoted as fn(x){{f}^{n}}\left( x \right). For example, for second order derivative, you can either use d2xdx2\dfrac{{{d}^{2}}x}{d{{x}^{2}}} or f’’(x){{f}’’}\left( x \right).