Solveeit Logo

Question

Question: The energy of the second stationary state in $Li^{+2}$ ion is $-4.95 \times 10^{-18}$ J. Find ioniza...

The energy of the second stationary state in Li+2Li^{+2} ion is 4.95×1018-4.95 \times 10^{-18} J. Find ionization energy (in KJ/mole) for He+He^{+} ions in its ground state (NA=6×1023N_A = 6 \times 10^{23}).

Answer

5280 KJ/mole

Explanation

Solution

The energy of an electron in the n-th stationary state of a hydrogen-like atom is given by En=kZ2n2E_n = -k \frac{Z^2}{n^2}. For Li+2Li^{+2} (Z=3Z=3) in the second stationary state (n=2n=2), E2=4.95×1018E_2 = -4.95 \times 10^{-18} J. Using this, we find kk: 4.95×1018=k3222    k=4.95×1018×49=2.2×1018-4.95 \times 10^{-18} = -k \frac{3^2}{2^2} \implies k = \frac{4.95 \times 10^{-18} \times 4}{9} = 2.2 \times 10^{-18} J. For He+He^{+} (Z=2Z=2) in its ground state (n=1n=1), the energy is E1=kZ2n2=(2.2×1018)2212=8.8×1018E_1 = -k \frac{Z^2}{n^2} = -(2.2 \times 10^{-18}) \frac{2^2}{1^2} = -8.8 \times 10^{-18} J. The ionization energy (IEIE) is the energy required to remove the electron from n=1n=1 to n=n=\infty, so IE=EE1=0E1=E1=8.8×1018IE = E_{\infty} - E_1 = 0 - E_1 = -E_1 = 8.8 \times 10^{-18} J per ion. To convert to KJ/mole: IE(KJ/mole)=(8.8×1018 J/ion)×(6×1023 ions/mole)×(1 KJ1000 J)=5280IE (\text{KJ/mole}) = (8.8 \times 10^{-18} \text{ J/ion}) \times (6 \times 10^{23} \text{ ions/mole}) \times (\frac{1 \text{ KJ}}{1000 \text{ J}}) = 5280 KJ/mole.