Solveeit Logo

Question

Question: As observed from the top of a \(80\text{ }m\) tall lighthouse, the angle of depression of two ships ...

As observed from the top of a 80 m80\text{ }m tall lighthouse, the angle of depression of two ships on the same side of the lighthouse in horizontal line with its base is 40&3040{}^\circ \And 30{}^\circ respectively. Find the distance between two ships. Give your answer correct the nearest metre?

Explanation

Solution

We apply trigonometry height and distance formula. In which we use either tanθ\tan \theta \text{, } sinθ or cosθ \text{sin}\theta \text{ or cos}\theta \text{ } opposite to θ\theta is your perpendicular other is base. This kind of question is used to find the height and distance of things these are for.

Formula used:
Tanθ=PerpendicularBase\operatorname{Tan}\theta =\dfrac{Perpendicular}{Base}

Complete step-by-step answer:

Lighthouse = 80 meters (Given)
Let the distance of ship 1 from the base of the lighthouse = x meters and let the distance between 2 ships = y meters.
Also given that the angle of depression of two ships on the same side of the light house in horizontal line with its base is 40&3040{}^\circ \And 30{}^\circ respectively.
AB=80 m(Height of lighthouse) BC=distance of ship 1 from light house base BD=distance of ship 2 from lighthouse base \begin{aligned} & AB=80\text{ }m\left( \text{Height of lighthouse} \right) \\\ & BC=\text{distance of ship }1\text{ from light house base} \\\ & BD=\text{distance of ship 2 from lighthouse base} \\\ \end{aligned}
In ABC tanθ=PerpendicularBase Tanθ=ABBC by putting the values of θ=40 AB=80 BC=x Tan40=80x 8391=80x BC=808391 x=9534 \begin{aligned} & \text{In }\vartriangle \text{ABC} \\\ & \text{tan}\theta \text{=}\dfrac{Perpendicular}{Base} \\\ & \Rightarrow \operatorname{Tan}\theta =\dfrac{AB}{BC} \\\ & \text{by putting the values of }\theta \text{=40}{}^\circ \text{ AB}=80\text{ BC}=x \\\ & \Rightarrow \text{Tan40=}\dfrac{80}{x} \\\ & \Rightarrow \cdot 8391=\dfrac{80}{x} \\\ & BC=\dfrac{80}{\cdot 8391} \\\ & \Rightarrow x=95\cdot 34 \\\ \end{aligned}
In ABD  Tanθ=PerpendicularBase putting the values θ 30 AB=80, BD=x+y Tan30=ABBD 13 AB x+y \begin{aligned} & \text{In }\vartriangle ABD\text{ } \\\ & \text{Tan}\theta \text{=}\dfrac{Perpendicular}{Base} \\\ & \text{putting the values }\theta \text{ 30}{}^\circ \text{ AB}=80,\ \text{BD}=x+y \\\ & \Rightarrow \operatorname{Tan}30=\dfrac{AB}{BD} \\\ & \Rightarrow \dfrac{1}{\sqrt{3}} \\\ & \Rightarrow \dfrac{AB}{~x+y} \\\ \end{aligned}

& \Rightarrow x+y=\sqrt{3}\text{ }AB\text{ }\left( \text{Cross Multiplication} \right) \\\ & 95\cdot 34+y=1\cdot 73\times 80\text{ }\left( \text{Substitute Values} \right) \\\ \end{aligned}$$ $\begin{aligned} & \Rightarrow 95\cdot 34+y=138\cdot 56 \\\ & \Rightarrow \text{ }y=138.56-95\cdot 34 \\\ & \Rightarrow \text{ }y=43\cdot 22m\left( \text{approximately} \right) \\\ \end{aligned}$ $\therefore \text{Distance between two ships}=CD=y=43\cdot 22m$ $43m\text{ as answer in nearest metre}$ . **Additional information:** To find the height of a hill, tower, star etc. We can use this formula. This formula is applicable for right angled triangles. **Note:** We apply $\text{tan}\theta =$ perpendicular/ base in this we use value of $\tan 40{}^\circ =\cdot 8391$ and we use this formula in two triangles $\vartriangle $ ABC and $\vartriangle $ ABD and simplifying find the value of x and y. Please do mention the units as required in the question as in this question they mentioned that find the answer to the nearest metre.