Solveeit Logo

Question

Question: Arrange the hyperbolic functions in ascending order \( A = \sinh 0 \) , \( B = \operatorname{Cosh} 0...

Arrange the hyperbolic functions in ascending order A=sinh0A = \sinh 0 , B=Cosh0B = \operatorname{Cosh} 0 and C=Sech0C = \operatorname{Sech} 0
A. A,B,CA,B,C
B. A,C,BA,C,B
C. B,C,AB,C,A
D. B,A,CB,A,C

Explanation

Solution

Hint : The hyperbolic functions have to be written in terms of exponential functions and the value is to be compared at x=0ox = {0^o}

Complete step-by-step answer :
The first function is A=sinh0A = \sinh 0
The formula for sinhx\sinh x in terms of exponential function is,
sinhx=exex2\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}
Substituting x=0x = 0 in equation (1),
sinh0=e0e02 sinh0=112 sinh0=0  \sinh 0 = \dfrac{{{e^0} - {e^{ - 0}}}}{2} \\\ \sinh 0 = \dfrac{{1 - 1}}{2} \\\ \sinh 0 = 0 \\\
The value of A=0(1)A = 0 \cdots \left( 1 \right)

The second function is B=cosh0B = \cosh 0
The formula for in terms of exponential function is,
coshx=ex+ex2\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}
Substituting in equation (2),
cosh0=e0+e02 cosh0=1+12 cosh0=1  \cosh 0 = \dfrac{{{e^0} + {e^{ - 0}}}}{2} \\\ \cosh 0 = \dfrac{{1 + 1}}{2} \\\ \cosh 0 = 1 \\\

The value of B=1(2)B = 1 \cdots \left( 2 \right)

The third function is C=sech0C = \operatorname{sech} 0
The formula for sechx\operatorname{sech} x in terms of exponential function is,
sechx=1coshx sechx=2ex+ex  \operatorname{sech} x = \dfrac{1}{{\cosh x}} \\\ \operatorname{sech} x = \dfrac{2}{{{e^x} + {e^{ - x}}}} \\\

Substituting x=0x = 0 in equation (3),
sech0=2e0+e0 sech0=22 sech0=1  \operatorname{sech} 0 = \dfrac{2}{{{e^0} + {e^{ - 0}}}} \\\ \operatorname{sech} 0 = \dfrac{2}{2} \\\ \operatorname{sech} 0 = 1 \\\
The value of C=1(3)C = 1 \cdots \left( 3 \right)
From equation (1), (2) and (3), the correct increasing order of the hyperbolic functions is
sinh0,cosh0=sech0\sinh 0,\cosh 0 = \operatorname{sech} 0 Or A,B=CA,B = C
But this option is not given.
Hence, none of the options is correct.

Note : Hyperbolic functions are very similar to the trigonometric functions but they are expressed in terms of exponential functions. The most common hyperbolic functions are sinhx\sinh x and coshx\cosh x .
The formula for in terms of exponential function is , coshx\cosh x
coshx=ex+ex2\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2}
This function satisfies the cosh0=1\cosh 0 = 1 and coshx=cosh(x)\cosh x = \cosh \left( { - x} \right) .
The graph of the coshx\cosh x is always above the graph of ex2\dfrac{{{e^x}}}{2} and exsinhx2\dfrac{{{e^{ - x} \sinh x }}}{2}
The formula for in terms of exponential function is ,
sinhx=exex2\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2}
This function satisfies the sinh0=0\sinh 0 = 0 and sinh(x)=sinh(x)\sinh \left( { - x} \right) = - \sinh \left( x \right) .
The graph of the sinhx\sinh x is always between the graphs of ex2\dfrac{{{e^x}}}{2} and ex2\dfrac{{{e^{ - x}}}}{2} .
For the large values of xx the graph of and coshx\cosh x are closer to each other .

The value of tanhx\tanh x can be calculated by dividing the sinhx\sinh x by coshx\cosh x as,
tanhx=sinhxcoshx tanhx=exexex+ex  \tanh x = \dfrac{{\sinh x}}{{\cosh x}} \\\ \tanh x = \dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} \\\
The factor of 22 got cancelled in the numerator and denominator.