Solveeit Logo

Question

Chemistry Question on Chemical bonding and molecular structure

Arrange the following in decreasing order of the number of molecules contained in: (A) 16 g of O2_2, (B) 16 g of CO2_2, (C) 16 g of CO, (D) 16 g of H2_2

A

(A), (B), (C), (D)

B

(D), (C), (A), (B)

C

(B), (A), (D), (C)

D

(C), (B), (D), (A)

Answer

(D), (C), (A), (B)

Explanation

Solution

To compare the number of molecules, use the formula: Number of moles=massmolar mass O2 has a molar mass of 32g/mol, so moles of O2=1632=0.5moles. CO2 has a molar mass of 44g/mol, so moles of CO2=16440.36moles. CO has a molar mass of 28g/mol, so moles of CO=16280.57moles. H2 has a molar mass of 2g/mol, so moles of H2=162=8moles. Thus, the decreasing order is H2>CO>O2>CO2.\text{To compare the number of molecules, use the formula:} \\\ \text{Number of moles} = \frac{\text{mass}}{\text{molar mass}} \\\ - \, \text{O}_2 \text{ has a molar mass of } 32 \, \text{g/mol, so moles of O}_2 = \frac{16}{32} = 0.5 \, \text{moles}. \\\ - \, \text{CO}_2 \text{ has a molar mass of } 44 \, \text{g/mol, so moles of CO}_2 = \frac{16}{44} \approx 0.36 \, \text{moles}. \\\ - \, \text{CO} \text{ has a molar mass of } 28 \, \text{g/mol, so moles of CO} = \frac{16}{28} \approx 0.57 \, \text{moles}. \\\ - \, \text{H}_2 \text{ has a molar mass of } 2 \, \text{g/mol, so moles of H}_2 = \frac{16}{2} = 8 \, \text{moles}. \\\ \text{Thus, the decreasing order is } \text{H}_2 > \text{CO} > \text{O}_2 > \text{CO}_2.