Solveeit Logo

Question

Question: Arrange the following coordination compounds in the decreasing order of magnetic moment. (A) $[NiCl_...

Arrange the following coordination compounds in the decreasing order of magnetic moment. (A) [NiCl4]2[NiCl_4]^{2-} (B) [Ni(CN)4]2[Ni(CN)_4]^{2-} (C) [CoF6]3[CoF_6]^{3-} (D) [Fe(CN)6]3[Fe(CN)_6]^{3-} Choose the correct answer from the options given below.

A

[CoF_6]^{3-} > [NiCl_4]^{2-} > [Fe(CN)_6]^{3-} > [Ni(CN)_4]^{2-}

B

[NiCl_4]^{2-} > [CoF_6]^{3-} > [Fe(CN)_6]^{3-} > [Ni(CN)_4]^{2-}

C

[CoF_6]^{3-} > [NiCl_4]^{2-} > [Ni(CN)_4]^{2-} > [Fe(CN)_6]^{3-}

D

[NiCl_4]^{2-} > [CoF_6]^{3-} > [Ni(CN)_4]^{2-} > [Fe(CN)_6]^{3-}

Answer

[CoF_6]^{3-} > [NiCl_4]^{2-} > [Fe(CN)_6]^{3-} > [Ni(CN)_4]^{2-}

Explanation

Solution

To determine the order of magnetic moment, we need to find the number of unpaired electrons (nn) for each complex and then use the formula μ=n(n+2)\mu = \sqrt{n(n+2)}.

  1. [NiCl4]2[NiCl_4]^{2-}: Ni2+^{2+} is d8d^8. This is a tetrahedral complex with weak field ligands (Cl^-). The electron configuration is e4t22e^4 t_2^2. Number of unpaired electrons (nn) = 2. Magnetic moment μA=2(2+2)=2×3=8\mu_A = \sqrt{2(2+2)} = \sqrt{2 \times 3} = \sqrt{8} B.M.

  2. [Ni(CN)4]2[Ni(CN)_4]^{2-}: Ni2+^{2+} is d8d^8. This is a square planar complex with strong field ligands (CN^-). All electrons are paired. Number of unpaired electrons (nn) = 0. Magnetic moment μB=0(0+2)=0\mu_B = \sqrt{0(0+2)} = 0 B.M.

  3. [CoF6]3[CoF_6]^{3-}: Co3+^{3+} is d6d^6. This is an octahedral complex with weak field ligands (F^-). It is a high spin complex. The electron configuration is t2g4eg2t_{2g}^4 e_g^2. Number of unpaired electrons (nn) = 4. Magnetic moment μC=4(4+2)=4×6=24\mu_C = \sqrt{4(4+2)} = \sqrt{4 \times 6} = \sqrt{24} B.M.

  4. [Fe(CN)6]3[Fe(CN)_6]^{3-}: Fe3+^{3+} is d5d^5. This is an octahedral complex with strong field ligands (CN^-). It is a low spin complex. The electron configuration is t2g5eg0t_{2g}^5 e_g^0. Number of unpaired electrons (nn) = 1. Magnetic moment μD=1(1+2)=1×3=3\mu_D = \sqrt{1(1+2)} = \sqrt{1 \times 3} = \sqrt{3} B.M.

Now, arrange the magnetic moments in decreasing order: 24>8>3>0\sqrt{24} > \sqrt{8} > \sqrt{3} > 0 This corresponds to C > A > D > B.

Therefore, the decreasing order of magnetic moment is [CoF6]3>[NiCl4]2>[Fe(CN)6]3>[Ni(CN)4]2[CoF_6]^{3-} > [NiCl_4]^{2-} > [Fe(CN)_6]^{3-} > [Ni(CN)_4]^{2-}.