Solveeit Logo

Question

Question: Argument and modulus of \(x^{2} + \sqrt{(y - 5)^{2}}\) are respectively....

Argument and modulus of x2+(y5)2x^{2} + \sqrt{(y - 5)^{2}} are respectively.

A

(xy)2+52\sqrt{(x - y)^{2} + 5^{2}}and 1

B

x2+(y5)2\sqrt{x^{2} + (y - 5)^{2}}and (1+i)(2+i)(3+i)=\left| (1 + i)\frac{(2 + i)}{(3 + i)} \right| =

C

0 and 12- \frac{1}{2}

D

12\frac{1}{2}and 1

Answer

12\frac{1}{2}and 1

Explanation

Solution

π\pi

Now z=0+ibz = 0 + ib

b>0b > 0

arg(z)=π2z=0+ibarg(z) = \frac{\pi}{2}z = 0 + ib

b<0zb < 0z

By De Moivre's Theorem,

yy -

Hence the amplitude is arg(z)=π2arg(z) = - \frac{\pi}{2} and modulus is 1.

Trick : a<0a < 0

zz

arg(z)=πarg(z) = \pi.