Solveeit Logo

Question

Mathematics Question on applications of integrals

Area of the region bounded by y=x1y=|x-1| and y=1y=1 is

A

22 s units

B

11 s units

C

12\frac{1}{2} s units

D

none of these

Answer

11 s units

Explanation

Solution

We have, y=x1y = x - 1, if x10x - 1 \ge 0 y=x+1y = - x + 1 , if x1<0x - 1< 0 Required area = area of shaded region A=021dx[01(1x)dx+12(x1)dx]A=\int\limits_{0}^{2}1 dx-\left[\int\limits_{0}^{1}\left(1-x\right)dx+\int\limits_{1}^{2}\left(x-1\right)dx\right] =[x]02[xx22]01[x22x]12=\left[x\right]_{0}^{2}-\left[x-\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{2}}{2}-x\right]_{1}^{2} =21212=1=2-\frac{1}{2}-\frac{1}{2}=1 s unit