Solveeit Logo

Question

Mathematics Question on Ellipse

Area of the greatest rectangle that can be inscribed in the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 is :

A

ab\frac{a}{b}

B

ab\sqrt{ab}

C

abab

D

2ab2ab

Answer

2ab2ab

Explanation

Solution

The parametric co-ordinates of point that lies on an ellipse x2a2+y2b2=1are(acos0,bsin0).\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 are \left(a\,cos\,0, b\, sin\, 0\right). Let the co-ordinates of the vertices of rectangle ABCDABCD are A(acos0,bsin0),B(acos0,bsin0)C(acos0,bsin0)A \left(a\, cos \,0, b\, sin\, 0\right), B\left(-a\,cos\,0,\,b\,sin\,0\right) C\left(-a\,cos\,0,\,b\,sin\,0\right) and D(acos0,bsin0)D\left(a\,cos\,0,\,-b\,sin\,0\right) then length of rectangle, AB=2acos0AB = 2a\, cos\, 0 and breadth of rectangle, AD=2bsin0AD =2b\, sin \,0 \therefore Area of rectangle = AB\times AD =2acos0×26sin0= 2a\, cos\, 0 \times 26 \,sin\, 0 \Rightarrow Area of rectangle, A=2absin20...(i)A = 2\,ab\, sin \,20\,...\left(i\right) dAdθ=2×2abcos2θ\therefore \frac{dA}{d\theta }=2\times2\,ab\,cos\,2\theta On putting dAd0=0\frac{dA}{d0}=0 for maxima or minima. dAdθ=0\therefore \frac{dA}{d\theta }=0 cos2θ=0\Rightarrow cos\,2\theta =0 2θ=π2θ=π4\Rightarrow 2\theta=\frac{\pi}{2} \Rightarrow \theta =\frac{\pi}{4} Now d2Adθ2=8absin2θ\frac{d^{2}A}{d\theta ^{2}}=-8ab\,sin^{2}\,\theta Now (d2Adθ2)θ=π4<0\left(\frac{d^{2}A}{d\theta ^{2}}\right)_{_{\theta =\frac{\pi}{4}}} < 0 \therefore Area is maximum at θ=π4\theta =\frac{\pi }{4} \Rightarrow Maximum Area of rectangle =2absqunit.(From(i))= 2\,ab\,sq unit. \left(From \left(i\right)\right) From E (i) Area of rectangle, A=2absin2θA = 2\,ab\, sin\, 2\theta Asin2θ\because A \,\propto\,sin\,2\theta and 1sin2θ1-1 \le sin\,2\theta \le1 \therefore A is maximum when sin2θ=1sin\,2\theta=1 \Rightarrow Maximum area of rectangle =2absqunit.= 2ab\,sq\, unit.