Question
Mathematics Question on Ellipse
Area of the greatest rectangle that can be inscribed in the ellipse a2x2+b2y2=1 is :
ba
ab
ab
2ab
2ab
Solution
The parametric co-ordinates of point that lies on an ellipse a2x2+b2y2=1are(acos0,bsin0). Let the co-ordinates of the vertices of rectangle ABCD are A(acos0,bsin0),B(−acos0,bsin0)C(−acos0,bsin0) and D(acos0,−bsin0) then length of rectangle, AB=2acos0 and breadth of rectangle, AD=2bsin0 \therefore Area of rectangle = AB\times AD =2acos0×26sin0 ⇒ Area of rectangle, A=2absin20...(i) ∴dθdA=2×2abcos2θ On putting d0dA=0 for maxima or minima. ∴dθdA=0 ⇒cos2θ=0 ⇒2θ=2π⇒θ=4π Now dθ2d2A=−8absin2θ Now (dθ2d2A)θ=4π<0 ∴ Area is maximum at θ=4π ⇒ Maximum Area of rectangle =2absqunit.(From(i)) From E (i) Area of rectangle, A=2absin2θ ∵A∝sin2θ and −1≤sin2θ≤1 ∴ A is maximum when sin2θ=1 ⇒ Maximum area of rectangle =2absqunit.