Solveeit Logo

Question

Question: Area of the greatest rectangle that can be inscribed in the ellipse <img src="https://cdn.pureessenc...

Area of the greatest rectangle that can be inscribed in the ellipse = 1, is –

A
B
C

ab

D

) 2ab

Explanation

Solution

)

Sol. Let the co-ordinates of the vertices of rectangle ABCD are A(a cos q, b sin q), B(–a cos q, b sin q),

C (–a cos q, – b sin q) and D (a cos q, – b sin q), then length of rectangle, AB = 2 cos q and breadth of rectangle, AD = 2b sin q.

\ Area of rectangle = AB × AD

Ž Area of rectangle = 2a cos q . 2b sin q

Ž Area of rectangle = 2 ab sin 2q

\ dAdθ\frac { \mathrm { dA } } { \mathrm { d } \theta } = 2 × 2 ab cos 2q

Put dAdθ\frac { \mathrm { dA } } { \mathrm { d } \theta } = 0, for maxima or minima

\ dAdθ\frac { \mathrm { dA } } { \mathrm { d } \theta } = 0

Ž cos 2q = 0 Ž 2q = π2\frac { \pi } { 2 } Ž q = π4\frac { \pi } { 4 }

= –8ab sin 2q

Now, < 0 Ž q = π4\frac { \pi } { 4 }

\ Area is maximum at q = π4\frac { \pi } { 4 }

Ž Maximum area of rectangle = 2ab.

[(from (i))].