Solveeit Logo

Question

Question: Area of the ellipse represented by 3x<sup>2</sup> + 4xy + 3y<sup>2</sup> = 1, is equal to...

Area of the ellipse represented by 3x2 + 4xy + 3y2 = 1, is equal to

A

π5\frac { \pi } { \sqrt { 5 } }sq. units

B

π35\frac { \pi } { 3 \sqrt { 5 } }sq. units

C

π25\frac { \pi } { 2 \sqrt { 5 } }sq. units

D

π45\frac { \pi } { 4 \sqrt { 5 } }sq. union

Answer

π5\frac { \pi } { \sqrt { 5 } }sq. units

Explanation

Solution

We have 3y2 + 4xy + 3x2 − 1 = 0

y=4x±16y212(3x21)6\Rightarrow y = \frac { - 4 x \pm \sqrt { 16 y ^ { 2 } - 12 \left( 3 x ^ { 2 } - 1 \right) } } { 6 }

i.e y=2x±35x23y = \frac { - 2 x \pm \sqrt { 3 - 5 x ^ { 2 } } } { 3 }

We must have 3 − 5x2 ≥ 0 i.e x ∈ [35,35]\left[ - \sqrt { \frac { 3 } { 5 } } , \sqrt { \frac { 3 } { 5 } } \right]

Equation of the branches of ellipse are

y1=2x+35x23y _ { 1 } = \frac { - 2 x + \sqrt { 3 - 5 x ^ { 2 } } } { 3 } and y2=2x35x23y _ { 2 } = \frac { - 2 x - \sqrt { 3 - 5 x ^ { 2 } } } { 3 }

Required area Δ=3535(y1y2)dx\Delta = \int _ { - \sqrt { \frac { 3 } { 5 } } } ^ { \sqrt { \frac { 3 } { 5 } } } \left( y _ { 1 } \sim y _ { 2 } \right) d x

=23353535x2dx=4303535x2dx= \frac { 2 } { 3 } \int _ { - \sqrt { \frac { 3 } { 5 } } } ^ { \sqrt { \frac { 3 } { 5 } } } \sqrt { 3 - 5 x ^ { 2 } } d x = \frac { 4 } { 3 } \int _ { 0 } ^ { \sqrt { \frac { 3 } { 5 } } } \sqrt { 3 - 5 x ^ { 2 } } d x

=453(x235x2+310sin1(x53))035= \frac { 4 \sqrt { 5 } } { 3 } \left( \frac { x } { 2 } \sqrt { \frac { 3 } { 5 } - x ^ { 2 } } + \frac { 3 } { 10 } \sin ^ { - 1 } \left( \frac { x \sqrt { 5 } } { \sqrt { 3 } } \right) \right) _ { 0 } ^ { \sqrt { \frac { 3 } { 5 } } }

=π5= \frac { \pi } { \sqrt { 5 } } sq. units