Solveeit Logo

Question

Question: Area of the ellipse \(\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1\) is...

Area of the ellipse x2a2+y2b2=1\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 is

A

πab\pi a bsq. unit

B

12πab\frac { 1 } { 2 } \pi a bsq. unit

C

14πab\frac { 1 } { 4 } \pi a bsq. unit

D

None of these

Answer

πab\pi a bsq. unit

Explanation

Solution

Since the given equation contains only even powers of x and only even powers of y, the curve is symmetrical about y-axis as well as x-axis.

∴ Whole area of given ellipse

=4ab0π/2(1+cos2θ2)dθ= 4 a b \int _ { 0 } ^ { \pi / 2 } \left( \frac { 1 + \cos 2 \theta } { 2 } \right) d \theta, {Putting x=asinθx = a \sin \theta}

=2ab(0π/2dθ+0π/2cos2θdθ)= 2 a b \left( \int _ { 0 } ^ { \pi / 2 } d \theta + \int _ { 0 } ^ { \pi / 2 } \cos 2 \theta d \theta \right)

=[θ]0π/2+[sin2θ2]0π/2=πab= [ \theta ] _ { 0 } ^ { \pi / 2 } + \left[ \frac { \sin 2 \theta } { 2 } \right] _ { 0 } ^ { \pi / 2 } = \pi a bsq. unit.