Solveeit Logo

Question

Question: Area of the circle in which a chord of length \(\sqrt { 2 }\) makes an angle \(\frac { \pi } { 2 }\)...

Area of the circle in which a chord of length 2\sqrt { 2 } makes an angle π2\frac { \pi } { 2 } at the centre is.

A

π2\frac { \pi } { 2 }

B

2π2 \pi

C

π\pi

D

π4\frac { \pi } { 4 }

Answer

π\pi

Explanation

Solution

Let AB be the chord of length 2\sqrt { 2 }, O be centre of the circle and let OC be the perpendicular from O on AB. Then

AB=2A B = \sqrt { 2 }

AC=BC=22=12A C = B C = \frac { \sqrt { 2 } } { 2 } = \frac { 1 } { \sqrt { 2 } }

In OBC,OB=BCcosec45=122=1\triangle O B C , O B = B C \operatorname { cosec } 45 ^ { \circ } = \frac { 1 } { \sqrt { 2 } } \cdot \sqrt { 2 } = 1

\thereforeArea of the circle =π(OB)2=π= \pi ( O B ) ^ { 2 } = \pi.