Solveeit Logo

Question

Mathematics Question on Vector Algebra

Area of a rectangle having vertices A,B,C,and  DA,B,C,and \space D with position vectorsi^+12j^+4k^,i^+12j^+4k^,i^12j^+4k^  andi^12j^+4k^ -\hat{i}+\frac{1}{2}\hat{j}+4\hat{k},\hat{i}+\frac{1}{2}\hat{j}+4\hat{k},\hat{i}-\frac{1}{2}\hat{j}+4\hat{k}\space and -\hat{i}-\frac{1}{2}\hat{j}+4\hat{k} respectively is

A

(12)(\frac{1}{2})

B

11

C

22

D

44

Answer

22

Explanation

Solution

The position vectors of vertices A,B,C,and  DA,B,C,and\space D of rectangle ABCDABCD are given as:
OA=i^+12j^+4k^,OB=i^+12j^+4k^,OC=i^12j^+4k^,OD=i^12j^+4k^\overrightarrow{OA}=-\hat{i}+\frac{1}{2}\hat{j}+4\hat{k},\overrightarrow{OB}=\hat{i}+\frac{1}{2}\hat{j}+4\hat{k},\overrightarrow{OC}=\hat{i}-\frac{1}{2}\hat{j}+4\hat{k},\overrightarrow{OD}=-\hat{i}-\frac{1}{2}\hat{j}+4\hat{k}
The adjacent sides AB  and  BC\overrightarrow{AB}\space and\space \overrightarrow{ BC} of the given rectangle are given as:
AB=(1+1)i^+(1212)j^+(44)k^=2i^\overrightarrow{AB}=(1+1)\hat{i}+(\frac{1}{2}-\frac{1}{2})\hat{j}+(4-4)\hat{k}=2\hat{i}
BC=(11)i^+(1212)j^+(44)k^=j^\overrightarrow{BC}=(1-1)\hat{i}+(-\frac{1}{2}-\frac{1}{2})\hat{j}+(4-4)\hat{k}=-\hat{j}
AB×ACi^j^k^ 200\010=k^(2)=2k^∴\overrightarrow{AB}\times\overrightarrow{AC}\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ 2 & 0 & 0\\\0&-1&0 \end{vmatrix}=\hat{k}(-2)=-2\hat{k}
|AB×AC\overrightarrow{AB}\times \overrightarrow{AC}|=(2)2=2=\sqrt{(-2)^{2}}=2
Now,it is known that the area of a parallelogram whose adjacent sides are a\vec{a} and b\vec{b} is |a×b\vec{a}\times\vec{b}|.
Hence,the area of the given rectangle is |AB×BC\overrightarrow{AB}\times\overrightarrow{BC}|=2=2 square units.
The correct answer is C.