Solveeit Logo

Question

Question: Area enclosed by the curve (y – sin<sup>-1</sup>x)<sup>2</sup> = x − x<sup>2</sup>, is equal to...

Area enclosed by the curve (y – sin-1x)2 = x − x2, is equal to

A

π2\frac { \pi } { 2 } sq. units

B

π4\frac { \pi } { 4 }sq. units

C

π8\frac { \pi } { 8 }sq. units

D

None of these

Answer

π4\frac { \pi } { 4 }sq. units

Explanation

Solution

Clearly x ≤ 1 and x – x2 ≥ 0 ⇒ x ∈ [0, 1]. Curve has two branches whose equations are

y = sin-1x ± xx2\sqrt { x - x ^ { 2 } } , and it is defined only in between [0, 1]. The area enclosed by the curve,

Δ=01(y1y2)dx=201xx2dx\Delta = \int _ { 0 } ^ { 1 } \left( y _ { 1 } \sim y _ { 2 } \right) d x = 2 \int _ { 0 } ^ { 1 } \sqrt { x - x ^ { 2 } } d x

=20114(x12)2dx= 2 \int _ { 0 } ^ { 1 } \sqrt { \frac { 1 } { 4 } - \left( x - \frac { 1 } { 2 } \right) ^ { 2 } } d x

=2(2x14xx201+18sin1(2x1)01)= 2 \left( \left. \frac { 2 x - 1 } { 4 } \sqrt { x - x ^ { 2 } } \right| _ { 0 } ^ { 1 } + \left. \frac { 1 } { 8 } \sin ^ { - 1 } ( 2 x - 1 ) \right| _ { 0 } ^ { 1 } \right)

=π4= \frac { \pi } { 4 } sq. units