Solveeit Logo

Question

Question: Area bounded by \[y = {\sin ^{ - 1}}\left| {\sin x} \right|\] and \[y = {\left( {{{\sin }^{ - 1}}\le...

Area bounded by y=sin1sinxy = {\sin ^{ - 1}}\left| {\sin x} \right| and y=(sin1sinx)2y = {\left( {{{\sin }^{ - 1}}\left| {\sin x} \right|} \right)^2}, 0x2π0 \le x \le 2\pi is
A.13+π24\dfrac{1}{3} + \dfrac{{{\pi ^2}}}{4}
B.16+π38\dfrac{1}{6} + \dfrac{{{\pi ^3}}}{8}
C.22
D.None

Explanation

Solution

Here, we will find the area bounded by the functions. We will first plot the graph of the given function. Then we will be using the concept of integration to find the area of the closed curves. Integration is the process of finding the smaller parts to find the larger area.
Formula Used: We will use the following Integration formulas:
1.xdx=x22\int {xdx = \dfrac{{{x^2}}}{2}}
2.x2dx=x33\int {{x^2}dx = \dfrac{{{x^3}}}{3}}
3.Area between two curves that intersect each other in the interval [a,b]\left[ {a,b} \right] is given by ac[f(x)g(x)]dx+cb[g(x)f(x)]dx\int_a^c {\left[ {f\left( x \right) - g\left( x \right)} \right]dx + \int_c^b {\left[ {g\left( x \right) - f\left( x \right)} \right]} } dx where cc is the root of the given two functions.

Complete step-by-step answer:
We are given that y=sin1sinxy = {\sin ^{ - 1}}\left| {\sin x} \right| and y=(sin1sinx)2y = {\left( {{{\sin }^{ - 1}}\left| {\sin x} \right|} \right)^2}, 0x2π0 \le x \le 2\pi
Let f(x)=sin1sinxf\left( x \right) = {\sin ^{ - 1}}\left| {\sin x} \right| and g(x)=(sin1sinx)2g\left( x \right) = {\left( {{{\sin }^{ - 1}}\left| {\sin x} \right|} \right)^2}.
We will first plot the graph for the trigonometric function.

We know that,
sin1sinx=x{\sin ^{ - 1}}\left| {\sin x} \right| = x when 0xπ20 \le x \le \dfrac{\pi }{2}
sin1sinx=πx{\sin ^{ - 1}}\left| {\sin x} \right| = \pi - x when π2xπ\dfrac{\pi }{2} \le x \le \pi
sin1sinx=π+x{\sin ^{ - 1}}\left| {\sin x} \right| = - \pi + x when πx3π2\pi \le x \le \dfrac{{3\pi }}{2}
sin1sinx=2πx{\sin ^{ - 1}}\left| {\sin x} \right| = 2\pi - x when 3π2x2π\dfrac{{3\pi }}{2} \le x \le 2\pi
We know that sinx\sin x always lies between 0 and 1.
From the graph, (1,1)\left( {1,1} \right) is the point of intersection of the given two curves.
Area between two curves that intersect each other in the interval [a,b]\left[ {a,b} \right] is given by ac[f(x)g(x)]dx+cb[g(x)f(x)]dx\int_a^c {\left[ {f\left( x \right) - g\left( x \right)} \right]dx + \int_c^b {\left[ {g\left( x \right) - f\left( x \right)} \right]} } dx where cc is the root of the given two functions.
From the graph the function is symmetrical and substituting sin1sinx=x{\sin ^{ - 1}}\left| {\sin x} \right| = x we get
Area of the bounded region =4[01xx2dx+1π2x2xdx] = 4\left[ {\int\limits_0^1 {x - {x^2}dx} + \int\limits_1^{\dfrac{\pi }{2}} {{x^2} - xdx} } \right]
By using the integration formula, xdx=x22\int {xdx = \dfrac{{{x^2}}}{2}} , x2dx=x33\int {{x^2}dx = \dfrac{{{x^3}}}{3}} we get
\Rightarrow Area of the bounded region =4[[x22x33]01+[x33x22]1π2] = 4\left[ {\left[ {\dfrac{{{x^2}}}{2} - \dfrac{{{x^3}}}{3}} \right]_0^1 + \left[ {\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2}} \right]_1^{\dfrac{\pi }{2}}} \right]
Now, by substituting the upper limit and lower limit, we get
\Rightarrow Area of the bounded region =4[[(122133)0]+[(π3233π2222)(133122)]] = 4\left[ {\left[ {\left( {\dfrac{{{1^2}}}{2} - \dfrac{{{1^3}}}{3}} \right) - 0} \right] + \left[ {\left( {\dfrac{{{\pi ^3}}}{{{2^3} \cdot 3}} - \dfrac{{{\pi ^2}}}{{{2^2} \cdot 2}}} \right) - \left( {\dfrac{{{1^3}}}{3} - \dfrac{{{1^2}}}{2}} \right)} \right]} \right]
\Rightarrow Area of the bounded region =4[2223+π324π28] = 4\left[ {\dfrac{2}{2} - \dfrac{2}{3} + \dfrac{{{\pi ^3}}}{{24}} - \dfrac{{{\pi ^2}}}{8}} \right]
By simplifying the equation, we get
\Rightarrow Area of the bounded region =4[123+π324π28] = 4\left[ {1 - \dfrac{2}{3} + \dfrac{{{\pi ^3}}}{{24}} - \dfrac{{{\pi ^2}}}{8}} \right]
\Rightarrow Area of the bounded region =4[1×3323+π324π28] = 4\left[ {1 \times \dfrac{3}{3} - \dfrac{2}{3} + \dfrac{{{\pi ^3}}}{{24}} - \dfrac{{{\pi ^2}}}{8}} \right]
Multiplying and subtracting the terms, we get
\Rightarrow Area of the bounded region =4[13+π324π28] = 4\left[ {\dfrac{1}{3} + \dfrac{{{\pi ^3}}}{{24}} - \dfrac{{{\pi ^2}}}{8}} \right]
\Rightarrow Area of the bounded region =[43+4π3244π28] = \left[ {\dfrac{4}{3} + \dfrac{{4{\pi ^3}}}{{24}} - \dfrac{{4{\pi ^2}}}{8}} \right]
By dividing the equation, we get
\Rightarrow Area of the bounded region =[43+π36π22] = \left[ {\dfrac{4}{3} + \dfrac{{{\pi ^3}}}{6} - \dfrac{{{\pi ^2}}}{2}} \right]
\Rightarrow Area of the bounded region =[43+(π36π22)] = \left[ {\dfrac{4}{3} + \left( {\dfrac{{{\pi ^3}}}{6} - \dfrac{{{\pi ^2}}}{2}} \right)} \right]
Therefore, the area of the bounded region is [43+(π36π22)]\left[ {\dfrac{4}{3} + \left( {\dfrac{{{\pi ^3}}}{6} - \dfrac{{{\pi ^2}}}{2}} \right)} \right].
Thus Option(A) is the correct answer.

Note: We need to know that the trigonometric functions are always symmetrical to each other. We know that sine and the inverse of sine always lies between 0 and 1. Whenever there is an intersection of two functions, then the area of the curve is found by subtracting the function of the lower curve from the function of the upper curve. We should also remember that the lower limit has to be subtracted from the upper limit.