Solveeit Logo

Question

Question: Area bounded by y = g(x), x-axis and the lines x = -2, x = 3, where \(g ( x ) = \left\{ \begin{array...

Area bounded by y = g(x), x-axis and the lines x = -2, x = 3, where g(x)={maxi:{f(t);2tx},2x<0mini:{f(t);0tx},0x3g ( x ) = \left\{ \begin{array} { c c } \operatorname { maxi } : \{ f ( t ) ; - 2 \leq t \leq x \} , & - 2 \leq x < 0 \\ \operatorname { mini } : \{ f ( t ) ; 0 \leq t \leq x \} , & 0 \leq x \leq 3 \end{array} \right. and f(x)

= x2− |x|, is equal to

A

11324\frac { 113 } { 24 }sq. units

B

11124\frac { 111 } { 24 } sq. units

C

11724\frac { 117 } { 24 } sq. units

D

12124\frac { 121 } { 24 }sq. union

Answer

11324\frac { 113 } { 24 }sq. units

Explanation

Solution

Clearly g(x) =

s

Δ=202dx+01/2(xx2)dx+1/2314dx\Delta = \int _ { - 2 } ^ { 0 } 2 d x + \int _ { 0 } ^ { 1 / 2 } \left( x - x ^ { 2 } \right) d x + \int _ { 1 / 2 } ^ { 3 } \frac { 1 } { 4 } d x