Solveeit Logo

Question

Question: Area bounded by the parabola y = x<sup>2</sup>− 2x + 3 and tangents drawn to it from the point P(1, ...

Area bounded by the parabola y = x2− 2x + 3 and tangents drawn to it from the point P(1, 0) is equal to

A

424 \sqrt { 2 }sq. units

B

423\frac { 4 \sqrt { 2 } } { 3 }sq. units

C

823\frac { 8 \sqrt { 2 } } { 3 }sq. units

D

1632\frac { 16 } { 3 } \sqrt { 2 }sq. units

Answer

823\frac { 8 \sqrt { 2 } } { 3 }sq. units

Explanation

Solution

Let the drawn tangents be PA and PB. AB is clearly the chord of contact of point 'P', thus equation of AB is 12\frac { 1 } { 2 }.(y + 0) = x.1 − (x+ 1) + 3 i.e. y = 4

x coordinates of points A and B will be given by, x2 − 2x + 3 = 4 i.e. x2 − 2x − 1 = 0

⇒ x = 1 ± 2\sqrt { 2 }

Thus AB = 222 \sqrt { 2 } units.

Hence ∆PAB = 12(22)4=42\frac { 1 } { 2 } ( 2 \sqrt { 2 } ) \cdot 4 = 4 \sqrt { 2 }

Now area bounded by line AB and parabola is equal to 121+2(4(x22x+3))dx\int _ { 1 - \sqrt { 2 } } ^ { 1 + \sqrt { 2 } } \left( 4 - \left( x ^ { 2 } - 2 x + 3 \right) \right) d x i.e equal to 423\frac { 4 \sqrt { 2 } } { 3 } sq. units.

Thus required area = 42423=8234 \sqrt { 2 } - \frac { 4 \sqrt { 2 } } { 3 } = \frac { 8 \sqrt { 2 } } { 3 } sq. units.