Solveeit Logo

Question

Question: Area bounded by the parabola (y − 2)<sup>2</sup> = x − 1, the tangent to it at the point P(2, 3) and...

Area bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point P(2, 3) and the x-axis is equal to

A

9 sq. units

B

6 sq. units

C

3 sq. units

D

None of these

Answer

9 sq. units

Explanation

Solution

(y – 2)2 = (x – 1) ⇒ 2(y – 2). = 1

dydx=12(y2)\frac { d y } { d x } = \frac { 1 } { 2 ( y - 2 ) }

Thus equation of tangent at P(2, 3) is,

(y − 3) = 12\frac { 1 } { 2 }(x − 2) i.e. x = 2y - 4.

Required area Δ=03((y2)2+1(2y4))dy\Delta = \int _ { 0 } ^ { 3 } \left( ( y - 2 ) ^ { 2 } + 1 - ( 2 y - 4 ) \right) d y

=((y2)33y2+5y)03= \left( \frac { ( y - 2 ) ^ { 3 } } { 3 } - y ^ { 2 } + 5 y \right) _ { 0 } ^ { 3 } = 9 sq. units.