Solveeit Logo

Question

Question: Area bounded by the curves y = tanx and y = tan<sup>2</sup>x in between x ∈\(\left( - \frac { \pi } ...

Area bounded by the curves y = tanx and y = tan2x in between x ∈(π3,π3)\left( - \frac { \pi } { 3 } , \frac { \pi } { 3 } \right)is equal to

A

12\frac { 1 } { 2 }(π + ln 2 – 2) sq. units

B

13\frac { 1 } { 3 }(π + ln(22\sqrt { 2 }- 3) sq. units

C

14\frac { 1 } { 4 }(π + ln4 – 4) sq. units

D

12\frac { 1 } { 2 }(π + ln4 – 2) sq. units

Answer

14\frac { 1 } { 4 }(π + ln4 – 4) sq. units

Explanation

Solution

The given curves intersect at x=π4x = \frac { \pi } { 4 }, in between x e(π3,π3)\left( - \frac { \pi } { 3 } , \frac { \pi } { 3 } \right)

Required area Δ=0π/4(tanxtan2x)dx\Delta = \int _ { 0 } ^ { \pi / 4 } \left( \tan x - \tan ^ { 2 } x \right) d x

= ln sec x 0π/4(tanxx)0π/4\left. \right| _ { 0 } ^ { \pi / 4 } - \left. ( \tan x - x ) \right| _ { 0 } ^ { \pi / 4 }

= ln2(1π4)=(π4+ln21)\ln \sqrt { 2 } - \left( 1 - \frac { \pi } { 4 } \right) = \left( \frac { \pi } { 4 } + \ln \sqrt { 2 } - 1 \right) sq. units.