Solveeit Logo

Question

Question: Area bounded by the curves y = e<sup>x</sup>, y = 2x - x<sup>2</sup> and the line x = 0, x = 1; is e...

Area bounded by the curves y = ex, y = 2x - x2 and the line x = 0, x = 1; is equal to

A

3e23\frac { 3 e - 2 } { 3 }sq. units

B

4e54\frac { 4 e - 5 } { 4 }sq. units

C

sq. units

D

3e53\frac { 3 e - 5 } { 3 }sq. union

Answer

3e53\frac { 3 e - 5 } { 3 }sq. union

Explanation

Solution

For x ∈ [0, 1], 2x – x2 ∈ [0, 1].

Thus ex > 2x - x2 ∀ x ∈ [0, 1].

Hence the required area

Δ=01((ex(2xx2))dx\Delta = \int _ { 0 } ^ { 1 } \left( \left( e ^ { x } - \left( 2 x - x ^ { 2 } \right) \right) d x \right.

=(exx2+x33)01=3e55= \left( e ^ { x } - x ^ { 2 } + \frac { x ^ { 3 } } { 3 } \right) _ { 0 } ^ { 1 } = \frac { 3 e - 5 } { 5 } sq. units