Solveeit Logo

Question

Question: Area bounded by the curve y<sup>2</sup> (2a – x) = x<sup>3</sup> and the line x = 2a is –...

Area bounded by the curve y2 (2a – x) = x3 and the line x = 2a is –

A

3pa2

B

3πa22\frac { 3 \pi \mathrm { a } ^ { 2 } } { 2 }

C

3πa24\frac { 3 \pi \mathrm { a } ^ { 2 } } { 4 }

D

None of these

Answer

3pa2

Explanation

Solution

y2 (2a – x) = x3 is symmetrical about x-axis because even power of y is present. It also passes through (0, 0). The line x = 2a is asymptote as y ®  when x = 2a.

\ Area = 2 02aydx\int _ { 0 } ^ { 2 \mathrm { a } } \mathrm { ydx } = 2 02ax32ax\int _ { 0 } ^ { 2 a } \sqrt { \frac { x ^ { 3 } } { 2 a - x } } dx Put x = 2a sin2 q

Ž dx = 4a sin q cos q dq

\ Area = 20π/2\int _ { 0 } ^ { \pi / 2 }2a sin3θcosθ\frac { \sin ^ { 3 } \theta } { \cos \theta } . 4a sin q cos q dq

= 16 a2 0π/2sin4\int _ { 0 } ^ { \pi / 2 } \sin ^ { 4 }q dq = 16 a2 . 3.14.2\frac { 3.1 } { 4.2 } π2\frac { \pi } { 2 } = 3p a2.