Solveeit Logo

Question

Question: Area bounded by the curve \(y = xe^{x^{2}},\) \(x -\)axis and the ordinates \(x = 0,x = a\)...

Area bounded by the curve y=xex2,y = xe^{x^{2}}, xx -axis and the ordinates x=0,x=ax = 0,x = a

A

ea2+12\frac{e^{a^{2}} + 1}{2}sq. unit

B

ea212\frac{e^{a^{2}} - 1}{2}sq. unit

C

ea2+1e^{a^{2}} + 1sq. unit

D

ea21e^{a^{2}} - 1sq. unit

Answer

ea212\frac{e^{a^{2}} - 1}{2}sq. unit

Explanation

Solution

Required area is 0aydx=0axex2dx\int_{0}^{a}{ydx = \int_{0}^{a}{xe^{x^{2}}dx}}

We put x2=tdx=dt2xx^{2} = t \Rightarrow dx = \frac{dt}{2x} as x=0t=0x = 0 \Rightarrow t = 0 and

x=at=a2x = a \Rightarrow t = a^{2}, then it reduces to

120a2etdt=12[et]0a2=ea212\frac{1}{2}\int_{0}^{a^{2}}{e^{t}dt = \frac{1}{2}\lbrack e^{t}\rbrack_{0}^{a^{2}} = \frac{e^{a^{2}} - 1}{2}} sq. unit.