Solveeit Logo

Question

Question: Area between y = \|cos<sup>–1</sup>(sin x)\| – \|sin<sup>–1</sup>(cos x)\| and x-axis, where x Î \(\...

Area between y = |cos–1(sin x)| – |sin–1(cos x)| and x-axis, where x Î [3π2,2π]\left[ \frac { 3 \pi } { 2 } , 2 \pi \right] is -

A

π2\frac { \pi } { 2 }

B

π22\frac { \pi ^ { 2 } } { 2 }

C

π24\frac { \pi ^ { 2 } } { 4 }

D

π4\frac { \pi } { 4 }

Answer

π24\frac { \pi ^ { 2 } } { 4 }

Explanation

Solution

r = |cos–1 (sinx)| – |sin–1(cosx)|

= |cos–1 cos| – |sin–1 sin (π2+x)\left( \frac { \pi } { 2 } + x \right) | = 5π2x\left| \frac { 5 \pi } { 2 } - x \right| = 4p –2x \ desired area = = π24\frac { \pi ^ { 2 } } { 4 }