Solveeit Logo

Question

Question: Are the four points \[A\left( {1, - 1,1} \right),B\left( { - 1,1,1} \right),C\left( {1,1,1} \right)\...

Are the four points A(1,1,1),B(1,1,1),C(1,1,1)andD(2,3,4)A\left( {1, - 1,1} \right),B\left( { - 1,1,1} \right),C\left( {1,1,1} \right)\,\,{\text{and}}\,\,D\left( {2, - 3,4} \right) are coplanar? Justify your answer.

Explanation

Solution

In this problem, first we need to find the position vectors of the given points. Next, find the vectors joining the points AB,ACandADAB,AC\,\,{\text{and}}\,\,AD. Then, apply the condition of the points to be coplanar. Four points will be coplanar if the volume generated by the points is zero.

Complete step by step answer:
The given points are A(1,1,1),B(1,1,1),C(1,1,1)andD(2,3,4)A\left( {1, - 1,1} \right),B\left( { - 1,1,1} \right),C\left( {1,1,1} \right)\,\,{\text{and}}\,\,D\left( {2, - 3,4} \right).
The position vectors of the points A,B,C,DA,B,C,D are shown below.

a=i^j^+k^ b=i^+j^+k^ c=i^+j^+k^ d=2i^3j^+4k^  \vec a = \hat i - \hat j + \hat k \\\ \vec b = - \hat i + \hat j + \hat k \\\ \vec c = \hat i + \hat j + \hat k \\\ \vec d = 2\hat i - 3\hat j + 4\hat k \\\

The vector joining the points AA and BB is calculated as follows:

AB=ba AB=i^+j^+k^i^+j^k^ AB=2i^+2j^  \,\,\,\,\,\overrightarrow {AB} = \vec b - \vec a \\\ \Rightarrow \overrightarrow {AB} = - \hat i + \hat j + \hat k - \hat i + \hat j - \hat k \\\ \Rightarrow \overrightarrow {AB} = - 2\hat i + 2\hat j \\\

The vector joining the points AA and CC is calculated as follows:

AC=ca AC=i^+j^+k^i^+j^k^ AC=2j^  \,\,\,\,\,\overrightarrow {AC} = \vec c - \vec a \\\ \Rightarrow \overrightarrow {AC} = \hat i + \hat j + \hat k - \hat i + \hat j - \hat k \\\ \Rightarrow \overrightarrow {AC} = 2\hat j \\\

The vector joining the points AA and DD is calculated as follows:

AD=da AD=2i^3j^+4k^i^+j^k^ AD=i^2j^+3k^  \,\,\,\,\,\overrightarrow {AD} = \vec d - \vec a \\\ \Rightarrow \overrightarrow {AD} = 2\hat i - 3\hat j + 4\hat k - \hat i + \hat j - \hat k \\\ \Rightarrow \overrightarrow {AD} = \hat i - 2\hat j + 3\hat k \\\

For, points A,B,C,DA,B,C,D to be coplanar, there exist scalars x,yx,y such that,

AB=xAC+yAD 2i^+2j^=x(2j^)+y(i^2j^+3k^) 2i^+2j^=yi^+(2x2y)j^+3yk^  \,\,\,\,\,\,\overrightarrow {AB} = x \cdot \overrightarrow {AC} + y \cdot \overrightarrow {AD} \\\ \Rightarrow - 2\hat i + 2\hat j = x\left( {2\hat j} \right) + y\left( {\hat i - 2\hat j + 3\hat k} \right) \\\ \Rightarrow - 2\hat i + 2\hat j = y\hat i + \left( {2x - 2y} \right)\hat j + 3y\hat k \\\

By equation the vectors,

y=2......(1) 2x2y=2......(2) 3y=0......(3)  y = - 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 1 \right) \\\ 2x - 2y = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 2 \right) \\\ 3y = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 3 \right) \\\

From equation (1), y=2y = - 2, and from equation (3), y=0y = 0 which is not possible.
Thus, the points A,B,C,DA,B,C,D are not coplanar.

Note: In this problem, we need to form three vectors using the given points. Further, we need to find if there exist any linear relationship or not.