Solveeit Logo

Question

Question: Aqueous solution of \(NaOH\) is marked \(10\% \left( {w/w} \right)\). The density of the solution is...

Aqueous solution of NaOHNaOH is marked 10%(w/w)10\% \left( {w/w} \right). The density of the solution is 1.070gcm31.070\,gc{m^{ - 3}}. Calculate
(i) molarity
(ii) molality and
(iii) mole fraction of NaOHNaOH& water.
[Na=23,H=10,O=16]\left[ {Na = 23,H = 10,O = 16} \right]

Explanation

Solution

We only need the equation of molarity, molality and mole fraction to find the solution of the given question.

Formula Used:
Molarity  (M)=number  of  moles  of  soluteVolume  of  solution(L)Molarity\;\left( M \right) = \dfrac{{number\;of\;moles\;of\;solute}}{{Volume\;of\;solution\left( L \right)}}
Molality=number  of  moles  of  solute  Weight  of  solvent(kg)Molality = \dfrac{{number\;of\;moles\;of\;solute\;}}{{Weight\;of\;solvent\left( {kg} \right)}}
Mole  fraction,χ=number  of  moles  of  ATotal  number  of  molesMole\;fraction,\chi = \dfrac{{number\;of\;moles\;of\;A}}{{Total\;number\;of\;moles}}

Complete step by step solution:
We have an aqueous solution of NaOHNaOH, also given that it has 10%(w/w)10\% \left( {w/w} \right).
First of all, we have to understand what that means. When we have 100g of solution, here it is diluted. NaOHNaOH solution only 10g of NaOHNaOH is present in it. Since it has only 10% of its weight by weight.
So we understood that
mass  of  solute=10gmass\;of\;solute = 10g
mass  of  water=90gmass\;of\;water = 90g
Also, we know that
density=massvolumesolutiondensity = \dfrac{{mass}}{{volum{e_{solution}}}}
The density of the solution is given,
density=1.070gcm3density = 1.070gc{m^{ - 3}}
Volume  of  solution=massdensity\Rightarrow Volume\;of\;solution = \dfrac{{mass}}{{density}}
mass=100gmass = 100g
Substituting the values to the equation, we get
Volume  of  solution=1001.070=93.46cm3Volume\;of\;solution = \dfrac{{100}}{{1.070}} = 93.46c{m^3}
Converting it to litre we get, 0.09346L
Now, we have to find number of moles of NaOHNaOH
number  of  moles,n=weight  of  substance(w)molar  mass  (M)number\;of\;moles,n = \dfrac{{weight\;of\;subs{\text{tan}}ce\left( w \right)}}{{molar\;mass\;\left( M \right)}}
Weight of the substance Is 10g and the molar mass of NaOHNaOH is 1×23+16+10=491 \times 23 + 16 + 10 = 49
n=1049=0.2gmol1\Rightarrow n = \dfrac{{10}}{{49}} = 0.2gmo{l^{ - 1}}
(i) molarity:
Molarity is the number of moles of solute dissolved per litre of the solution.
Molarity  (M)=number  of  moles  of  soluteVolume  of  solution(L)Molarity\;\left( M \right) = \dfrac{{number\;of\;moles\;of\;solute}}{{Volume\;of\;solution\left( L \right)}}
Molarity=0.20.09346M=2.14M\Rightarrow Molarity = \dfrac{{0.2}}{{0.09346}}M = 2.14M
i.e., the molarity of the aqueous solution is 2.14M.

(ii) Molality:
Molality is the number of moles of solute dissolved per kilogram of the solvent.
Molality=number  of  moles  of  solute  Weight  of  solvent(kg)Molality = \dfrac{{number\;of\;moles\;of\;solute\;}}{{Weight\;of\;solvent\left( {kg} \right)}}
Weight of the solvent is 90g
molality=0.20.09(kg)=2.22m\Rightarrow molality = \dfrac{{0.2}}{{0.09\left( {kg} \right)}} = 2.22m
i.e., the molality of an aqueous solution is 2.22m.

(iii) mole fraction:
Mole fraction of a component of a solution is defined as the ratio of the number of moles of that component to the total number of moles of the solution.
We already know the number of moles of NaOHNaOH. To find the number of water,
number  of  moles  of  water=weight  of  water  molar  mass  of  waternumber\;of\;moles\;of\;water = \dfrac{{weight\;of\;water\;}}{{molar\;mass\;of\;water}}
Weight of water is given as 90g and molar of water is 18.
Substituting the values we get
number  of  moles  of  water=9018=5molnumber\;of\;moles\;of\;water = \dfrac{{90}}{{18}} = 5mol
Mole  fraction,χA=number  of  moles  of  ATotal  number  of  molesMole\;fraction,{\chi _A} = \dfrac{{number\;of\;moles\;of\;A}}{{Total\;number\;of\;moles}}
Here we have only two component hence,
Mole  of  fraction  of  NaOH=number  of  moles  of  NaOHTotal  number  of  molesMole\;of\;fraction\;of\;NaOH = \dfrac{{number\;of\;moles\;of\;NaOH}}{{Total\;number\;of\;moles}}
Total  number  of  moles=0.2+5=5.2molTotal\;number\;of\;moles = 0.2 + 5 = 5.2mol
Substituting the values,
Mole  of  fraction  of  NaOH=0.25=0.04Mole\;of\;fraction\;of\;NaOH = \dfrac{{0.2}}{5} = 0.04
Mole  of  fraction  of  H2O=55.2=0.96Mole\;of\;fraction\;of\;{H_2}O = \dfrac{5}{{5.2}} = 0.96
**Mole fraction of NaOHNaOH is 0.04 and water is 0.96

Note:**
Sum of mole fractions of all the components of a solution is always unity
i.e., χA+χB=1{\chi _A} + {\chi _B} = 1