Solveeit Logo

Question

Question: A metallic sphere floats in an immiscible mixture of water ($\rho_w$ = 10³ kg/m³) and a liquid ($\rh...

A metallic sphere floats in an immiscible mixture of water (ρw\rho_w = 10³ kg/m³) and a liquid (ρL\rho_L = 13.5 x 10³) with (1/5)th portion by volume in the liquid and remaining in water. The density of the metal is :

A

4.5 x 10³ kg/m³

B

4.0 x 10³ kg/m³

C

3.5 x 10³ kg/m³

D

1.9 x 10³ kg/m³

Answer

3.5 x 10³ kg/m³

Explanation

Solution

Let VV be the total volume of the sphere and ρm\rho_m be its density.

Volume in liquid VL=15VV_L = \frac{1}{5}V.

Volume in water Vw=(115)V=45VV_w = (1 - \frac{1}{5})V = \frac{4}{5}V.

For a floating body, the weight of the body equals the total buoyant force.

Weight of sphere W=ρmVgW = \rho_m V g.

Total buoyant force FB=FBw+FBL=ρwVwg+ρLVLgF_B = F_{Bw} + F_{BL} = \rho_w V_w g + \rho_L V_L g.

Equating weight and buoyant force:

ρmVg=ρw(45V)g+ρL(15V)g\rho_m V g = \rho_w (\frac{4}{5}V) g + \rho_L (\frac{1}{5}V) g

Dividing by VgVg:

ρm=ρw45+ρL15\rho_m = \rho_w \frac{4}{5} + \rho_L \frac{1}{5}

Substitute the given densities:

ρm=(103 kg/m3)45+(13.5×103 kg/m3)15\rho_m = (10^3 \text{ kg/m}^3) \frac{4}{5} + (13.5 \times 10^3 \text{ kg/m}^3) \frac{1}{5}

ρm=0.8×103+2.7×103\rho_m = 0.8 \times 10^3 + 2.7 \times 10^3

ρm=(0.8+2.7)×103\rho_m = (0.8 + 2.7) \times 10^3

ρm=3.5×103 kg/m3\rho_m = 3.5 \times 10^3 \text{ kg/m}^3