Solveeit Logo

Question

Question: AOB is the positive quadrant of the ellipse <img src="https://cdn.pureessence.tech/canvas_240.png?to...

AOB is the positive quadrant of the ellipse in which OA=a, OB=b. The area between the arc AB and the chord AB of the ellipse is

A

12ab(π+2)\frac { 1 } { 2 } a b ( \pi + 2 )

B
C

14ab(π2)\frac { 1 } { 4 } a b ( \pi - 2 )

D

None of these

Answer

None of these

Explanation

Solution

Required area

= ba[12xa2x2+12a2sin1xa]0a+b2a[(ax)2]0a\frac { \mathrm { b } } { \mathrm { a } } \left[ \frac { 1 } { 2 } \mathrm { x } \sqrt { \mathrm { a } ^ { 2 } - \mathrm { x } ^ { 2 } } + \frac { 1 } { 2 } \mathrm { a } ^ { 2 } \sin ^ { - 1 } \frac { \mathrm { x } } { \mathrm { a } } \right] _ { 0 } ^ { \mathrm { a } } + \frac { \mathrm { b } } { 2 \mathrm { a } } \left[ ( \mathrm { a } - \mathrm { x } ) ^ { 2 } \right] _ { 0 } ^ { \mathrm { a } }

= ba[12a2sin1(1)]+b2a(0a2)\frac { b } { a } \left[ \frac { 1 } { 2 } a ^ { 2 } \sin ^ { - 1 } ( 1 ) \right] + \frac { b } { 2 a } \left( 0 - a ^ { 2 } \right)