Solveeit Logo

Question

Mathematics Question on Vectors

any three vectors such that ab0,bc0,\vec{a}\cdot\vec{b} \ne 0, \vec{b}\cdot\vec{c} \ne 0, then a\vec{a} and c\vec{c} are :

A

inclined at an angle of π6\frac{\pi}{6} between them

B

perpendicular

C

parallel

D

inclined at an angle of π3\frac{\pi}{3} between them

Answer

parallel

Explanation

Solution

(a×b)×c=a×(b×c)\because \left(\vec{a}\times\vec{b}\right)\times\vec{c}=\vec{a}\times\left(\vec{b}\times\vec{c}\right) (ac)b(bc)a=(ac)b(ab)c\Rightarrow \left(\vec{a}\cdot\vec{c}\right)\vec{b}-\left(\vec{b}\cdot\vec{c}\right)\vec{a}=\left(\vec{a}\cdot\vec{c}\right)\vec{b}-\left(\vec{a}\cdot\vec{b}\right)\vec{c} (bc)a=(ab)c\Rightarrow \left(\vec{b}\cdot\vec{c}\right) \vec{a}=\left(\vec{a}\cdot\vec{b}\right)\vec{c} a\Rightarrow \vec{a} is parallel to c.\vec{c}.