Solveeit Logo

Question

Quantitative Aptitude Question on Properties of Numbers

Any non-zero real numbers x,yx, y such that y3y ≠ 3 and xy<x+3y3\frac{x}{y}<\frac{x+3}{y-3}, will satisfy the condition

A

xy<yx\frac{x}{y}<\frac{y}{x}

B

If y>10y >10 , then x>y− x > y

C

If x<0x < 0 , then x<y− x < y

D

If y<0y < 0 , then x<y− x < y

Answer

If y<0y < 0 , then x<y− x < y

Explanation

Solution

Given :
xy<x+3y3\frac{x}{y}<\frac{x+3}{y-3}, this can be expressed as :

xyx+3y3<0\frac{x}{y}-\frac{x+3}{y-3}<0
Now,
x(y3)y(x+3)y(y3)<0\frac{x(y-3)-y(x+3)}{y(y-3)}<0

xy3xxy3yy(y3)<0\frac{xy-3x-xy-3y}{y(y-3)}<0

3(x+y)y(y3)<0\frac{-3(x+y)}{y(y-3)}<0

3(x+y)y(y3)>0\frac{3(x+y)}{y(y-3)}>0
From the above inequality , we can say that :
when y < 0 ⇒ y(y - 3) > 0.
So, to satisfy the above given equation 3(x+y)y(y3)>0\frac{3(x+y)}{y(y-3)}>0,
(x + y) must be greater than zero.
Therefore, x > 0 and |x| > |y|
So, the magnitude of x is greater than the magnitude of y.
Therefore, x > y and |x| > |y| ⇒ -x < y

So, the correct option is (D) : If y<0y < 0 , then x<y− x < y.