Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Angles of elevation of the top of a tower from three points (collinear) A,BA, B and C C on a road leading to the foot of the tower are 3030^\circ, 4545^\circ and 6060^\circ respectively. The ratio of ABAB to BCBC is

A

3:1\sqrt {3}:1

B

3:2\sqrt {3}:2

C

1:21 : 2

D

2:32 : \sqrt{3}

Answer

3:1\sqrt {3}:1

Explanation

Solution

By sine law, in ABQ\triangle A B Q
sin15AB=sin30BQ\frac{\sin 15^{\circ}}{A B}=\frac{\sin 30^{\circ}}{B Q}
BQ=sin30ABsin15\Rightarrow \quad B Q=\frac{\sin 30^{\circ} \cdot A B}{\sin 15^{\circ}}
By sine law, in BCQ\triangle B C Q
sin120BQ=sin15BC\frac{\sin 120^{\circ}}{B Q}=\frac{\sin 15^{\circ}}{B C}
BQ=BCsin120sin15\Rightarrow B Q=\frac{B C \sin 120^{\circ}}{\sin 15^{\circ}}... (ii)
From Eqs. (i) and (ii), we get
sin30ABsin15=BCsin120sin15\frac{\sin 30^{\circ} \cdot A B}{\sin 15^{\circ}}=\frac{B C \cdot \sin 120^{\circ}}{\sin 15^{\circ}}
ABBC=sin120sin30=cos30sin30=3/21/2\Rightarrow \frac{A B}{B C}=\frac{\sin 120^{\circ}}{\sin 30^{\circ}}=\frac{\cos 30^{\circ}}{\sin 30^{\circ}}=\frac{\sqrt{3} / 2}{1 / 2}
AB:BC=3:1A B: B C=\sqrt{3}: 1