Solveeit Logo

Question

Question: Angle of dip \(\delta\) and latitude \(\lambda\), on earth’s surface are related as ![](https://ww...

Angle of dip δ\delta and latitude λ\lambda, on earth’s surface are related as

A.tanδ=2tanλ\tan { \delta =2\tan { \lambda } }
B.tanδ=cotλ\tan { \delta =\cot { \lambda } }
C.tanδ=tanλ2\tan { \delta =\dfrac { \tan { \lambda } }{ 2 } }
D.tanδ=tanλ\tan { \delta =\tan { \lambda } }

Explanation

Solution

Using the formula for magnetic field find the magnetic field at position r. Then, find the magnetic field at θ\theta. But, θ=90+λ \theta =90+\lambda , so substitute this value in the equation for magnetic field for r as well as θ\theta. Now, take the ratio of these obtained magnetic fields and get the relation between angle of dip θ\theta and latitude λ\lambda.
Formula used:
Br=μ04π2Mcosθr3{ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } }
Bθ=μ04πMsinθr3{ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } }

Complete answer:
Consider the situation for dipoles at positions, r and θ\theta
The magnetic field at position r is given by,
Br=μ04π2Mcosθr3{ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { \theta } }{ { r }^{ 3 } } …(1)
The magnetic field at θ\theta is given by,
Bθ=μ04πMsinθr3{ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { \theta } }{ { r }^{ 3 } } …(2)
But, θ=90+λ \theta =90+\lambda …(3)
Thus, substituting the equation. (3) in equation. (2) we get,
Br=μ04π2Mcos90+λr3{ B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2M\cos { 90+ \lambda } }{ { r }^{ 3 } }
Br=μ04πMsinλr3\Rightarrow { B }_{ r }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin {\lambda} }{ { r }^{ 3 } } …(4)
Similarly. Equation. (2) becomes,
Bθ=μ04πMsin90+λr3{ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\sin { 90+ \lambda } }{ { r }^{ 3 } }
Bθ=μ04πMcosλr3{ B }_{ \theta }=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { M\cos {\lambda} }{ { r }^{ 3 } } …(5)
Dividing equation.(4) by (5) we get,
BrBθ=2tanλ\dfrac { { B }_{ r } }{ { B }_{ \theta } } =-2\tan { \lambda }
Or we can also write it as,
tanδ=tanλ\tan { \delta =\tan { \lambda } }

Hence, the correct answer is option D i.e. tanδ=tanλ.\tan { \delta =\tan { \lambda } }.

Note:
Here, the angle of dip means the angle of magnetic dip. Magnetic dip is defined as an angle which is made between the Earth’s magnetic field lines and horizontal plane. This angle is not constant. It depends on the point that is taken into consideration. And by latitude, we mean magnetic latitude. It is different from geographic latitude. It is defined with respect to the magnetic dipoles.