Solveeit Logo

Question

Question: Angle between two lines of regression is given by...

Angle between two lines of regression is given by

A

tan1(byx+1bxy1bxybyx)\tan^{- 1}\left( \frac{b_{yx} + \frac{1}{b_{xy}}}{1 - \frac{b_{xy}}{b_{yx}}} \right)

B

tan1(byxbxy1byx+bxy)\tan^{- 1}\left( \frac{b_{yx} - b_{xy} - 1}{b_{yx} + b_{xy}} \right)

C

tan1(bxy1byx1+bxybyx)\tan^{- 1}\left( \frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}} \right)

D

tan1(byxbxy1+byx.bxy)\tan^{- 1}\left( \frac{b_{yx} - b_{xy}}{1 + b_{yx}.b_{xy}} \right)

Answer

tan1(bxy1byx1+bxybyx)\tan^{- 1}\left( \frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}} \right)

Explanation

Solution

Equation of regression line of y on x is,

yyˉ=rσyσx(xxˉ)y - \bar{y} = r\frac{\sigma_{y}}{\sigma_{x}}\left( x - \bar{x} \right) or yyˉ=byx(xxˉ)y - \bar{y} = b_{yx}(x - \bar{x})

m1=m_{1} = Slope of regression line of yy on x=byxx = b_{yx}

Now, equation of regression line of x on y is,

xxˉ=bxy(yyˉ)x - \bar{x} = b_{xy}(y - \bar{y})

rxy=20(36)(25)=23=0.66r_{xy} = \frac{20}{\sqrt{(36)(25)}} = \frac{2}{3} = 0.66 slope of regression line of x on y=1bxyy = \frac{1}{b_{xy}}

If angle between them is θ\theta, then

tanθ=±m1m21+m1m2=byx1bxy1+byxbxy\tan\theta = \pm \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}} = \frac{b_{yx} - \frac{1}{b_{xy}}}{1 + \frac{b_{yx}}{b_{xy}}}or tanθ=(bxy1byx1+bxybyx)\tan\theta = \left( \frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}} \right).