Solveeit Logo

Question

Question: Angle between the line \(\mathbf{r} = (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + \lambda ⥂ (\mathbf{i...

Angle between the line r=(i+2jk)+λ(ij+k)\mathbf{r} = (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + \lambda ⥂ (\mathbf{i} - \mathbf{j} + \mathbf{k}) and the normal to the plane r.(2ij+k)=4\mathbf{r}.(2\mathbf{i} - \mathbf{j} + \mathbf{k}) = 4 is

A

sin1(223)\sin^{- 1}{}\left( \frac{2\sqrt{2}}{3} \right)

B

cos1(223)\cos^{- 1}{}\left( \frac{2\sqrt{2}}{3} \right)

C

tan1(223)\tan^{- 1}{}\left( \frac{2\sqrt{2}}{3} \right)

D

cot1(223)\cot^{- 1}{}\left( \frac{2\sqrt{2}}{3} \right)

Answer

sin1(223)\sin^{- 1}{}\left( \frac{2\sqrt{2}}{3} \right)

Explanation

Solution

The plane is 2xy+z=42x - y + z = 4 and the line is

x11=y21=z+11\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z + 1}{1}

sinθ=2+1+163=418=223θ=sin1(223)\therefore\sin\theta = \frac{2 + 1 + 1}{\sqrt{6}\sqrt{3}} = \frac{4}{\sqrt{18}} = \frac{2\sqrt{2}}{3} \Rightarrow \theta = \sin^{- 1}\left( \frac{2\sqrt{2}}{3} \right).