Solveeit Logo

Question

Question: Angle between the asymptotes of a hyperbola is \(30^\circ \) then \(e = \) A. \(\sqrt 6 \) B. \(...

Angle between the asymptotes of a hyperbola is 3030^\circ then e=e =
A. 6\sqrt 6
B. 2\sqrt 2
C. 62\sqrt 6 - \sqrt 2
D. 63\sqrt 6 - \sqrt 3

Explanation

Solution

Here, we will use the given angles and the asymptotes of a hyperbola to form a quadratic equation and solve it further to find the value of the variable. Then use this value we will find the required value of eccentricity of the given hyperbola. A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone.

Formula Used:
1. Equation of a hyperbola is x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1
2. Quadratic formula can be written as x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
3. Eccentricity of hyperbola, e=1+b2a2e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}}

Complete step-by-step answer:
Equation of a hyperbola is x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1
The asymptotes of a hyperbola are y=±baxy = \pm \dfrac{b}{a}x
According to the question, angle between the asymptotes of a hyperbola is 3030^\circ
Hence, we get,
tan30=ba+ba1b2a2=2baa2b2a2=2aba2b2\tan 30^\circ = \dfrac{{\dfrac{b}{a} + \dfrac{b}{a}}}{{1 - \dfrac{{{b^2}}}{{{a^2}}}}} = \dfrac{{\dfrac{{2b}}{a}}}{{\dfrac{{{a^2} - {b^2}}}{{{a^2}}}}} = \dfrac{{2ab}}{{{a^2} - {b^2}}}
Using the trigonometric table, we know that tan30=13\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}
13=2aba2b2\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{{2ab}}{{{a^2} - {b^2}}}
Dividing numerator and denominator by a2{a^2}, we get,
13=2aba21b2a2=2(ba)1(ba)2\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{{\dfrac{{2ab}}{{{a^2}}}}}{{1 - \dfrac{{{b^2}}}{{{a^2}}}}} = \dfrac{{2\left( {\dfrac{b}{a}} \right)}}{{1 - {{\left( {\dfrac{b}{a}} \right)}^2}}}
Now, substitute (ba)=x\left( {\dfrac{b}{a}} \right) = x
13=2x1x2\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{{2x}}{{1 - {x^2}}}
Now, cross multiplying, we get
1x2=23x\Rightarrow 1 - {x^2} = 2\sqrt 3 x
This can be written as:
x2+23x1=0\Rightarrow {x^2} + 2\sqrt 3 x - 1 = 0
Comparing this quadratic equation with ax2+bx+c=0a{x^2} + bx + c = 0, we have a=1a = 1, b=23b = 2\sqrt 3 and c=1c = - 1
Hence, substituting these in quadratic formula, we get,
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
x=23±(23)24(1)(1)2(1)\Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}
Solving further, we get,
x=23±12+42=23±162=23±42\Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {12 + 4} }}{2} = \dfrac{{ - 2\sqrt 3 \pm \sqrt {16} }}{2} = \dfrac{{ - 2\sqrt 3 \pm 4}}{2}
Dividing the numerator and denominator by 2, we get
x=3±2\Rightarrow x = - \sqrt 3 \pm 2
But, xxcan’t be negative
Therefore, we get,
x=23\Rightarrow x = 2 - \sqrt 3
Hence eccentricity, e=1+b2a2=1+x2e = \sqrt {1 + \dfrac{{{b^2}}}{{{a^2}}}} = \sqrt {1 + {x^2}}
Using the value x=23x = 2 - \sqrt 3 , we get,
e=1+(23)2e = \sqrt {1 + {{\left( {2 - \sqrt 3 } \right)}^2}}
Now, using the identity (ab)2=a22ab+b2{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}
e=1+443+3=843\Rightarrow e = \sqrt {1 + 4 - 4\sqrt 3 + 3} = \sqrt {8 - 4\sqrt 3 }
e=1+443+3=223\Rightarrow e = \sqrt {1 + 4 - 4\sqrt 3 + 3} = 2\sqrt {2 - \sqrt 3 }

Hence, we get,
e=62\Rightarrow e = \sqrt 6 - \sqrt 2
Hence, option C is the correct answer.

Note:
The plane does not have to be parallel to the axis of the cone for the hyperbola to be symmetrical. A hyperbola will be symmetrical in any case and every hyperbola has two asymptotes. A hyperbola with a horizontal transverse axis and center at (h,k)\left( {h,k} \right) has one asymptote with equation y=k+(xh)y = k + \left( {x - h} \right)and the other with equation y=k(xh)y = k - \left( {x - h} \right). Also, the eccentricity of a circle is zero. The eccentricity of an ellipse which is not a circle is greater than zero but less than 1. The eccentricity of a parabola is 1 and the eccentricity of a hyperbola is greater than 1.